Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33876843

RESUMO

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-fos/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase 5/genética , Células MCF-7 , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias de Mama Triplo Negativas/genética
2.
Anticancer Drugs ; 29(9): 898-903, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30044300

RESUMO

The aim of this study was to evaluate the anticancer and antitumor activities of ceramide analog 315 in nude mice. Nude mice (n=10) were injected bilaterally with 5×10 MDA-MB-231 cells on each side. Tumors were allowed to form for 2 weeks. The mice were then divided into two groups (n=5 in each group). The control group mice were injected with 25 µl of dimethyl sulfoxide and the treatment group mice were injected with 10 mg/kg of analog 315 (in dimethyl sulfoxide, 25 µl volume) every day for a period of 3 weeks. Animal weights and tumors were measured every week for 3 weeks. At the end of the experimental period, control animals had retained excess fluid, and showed larger tumor sizes compared with the treated group (2.95 vs. 1.67 g). A 45% reduction in tumor size and 80% decrease in tumor volume were observed in the treatment group. There was a significant increase in the weights of liver (10%) and spleen (19%) between the control and treated animals. Hematoxylin and Eosin staining of MDA-MB-231 tumor sections revealed more acellular necrotic regions in tumors from the treatment groups compared with the ones from the control group. Ki67, a proliferation marker was higher in number in control tumor section (71.8±12.8) compared to the treatment tumor section (37.4±10.4) (P<0.001). Photomicrographs showed metastatic tumor burden in kidney, lungs, and spleen collected from the control group mice bearing MDA-MB-231 tumors. Treatment group mice showed normal microscopic tissue architecture. Overall, our study showed tumor growth inhibition and antimetastatic effects for the novel ceramide analog 315.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ceramidas/farmacologia , Carga Tumoral/efeitos dos fármacos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ceramidas/química , Dimetil Sulfóxido/administração & dosagem , Feminino , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Renais/prevenção & controle , Neoplasias Renais/secundário , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Metástase Neoplásica/prevenção & controle , Neoplasias Esplênicas/prevenção & controle , Neoplasias Esplênicas/secundário , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA