Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791469

RESUMO

Periodontitis is an inflammatory process that starts with soft tissue inflammation caused by the intervention of oral bacteria. By modulating local immunity, it is possible to supplement or replace current therapeutic methods. The aim of this study was to compare the effects of an immunostimulatory treatment with the antibiotherapy usually applied to periodontitis patients. On a model of periodontitis induced in 30 rats (divided into three equal groups) with bacterial strains selected from the human oral microbiome (Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus oralis), we administered antibiotics, bacterial lysates and saline for 10 days. Clinically, no significant lesions were observed between the groups, but hematologically, we detected a decrease in lymphocyte and neutrophil counts in both the antibiotic and lysate-treated groups. Immunologically, IL-6 remained elevated compared to the saline group, denoting the body's effort to compensate for bone loss due to bacterial action. Histopathologically, the results show more pronounced oral tissue regeneration in the antibiotic group and a reduced inflammatory reaction in the lysate group. We can conclude that the proposed bacterial lysate has similar effects to antibiotic therapy and can be considered an option in treating periodontitis, thus eliminating the unnecessary use of antibiotics.


Assuntos
Antibacterianos , Periodontite , Periodontite/microbiologia , Periodontite/tratamento farmacológico , Periodontite/terapia , Animais , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Ratos , Masculino , Humanos , Interleucina-6/metabolismo , Modelos Animais de Doenças , Ratos Wistar , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Lisados Bacterianos
2.
J Integr Neurosci ; 23(1): 13, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38287856

RESUMO

Both classic epigenetic modifications and microRNAs can impact a range of bodily processes, from metabolism to brain function, and may contribute to the development of diseases such as cancer, cardiovascular disorders, and psychiatric disorders. Numerous studies suggest a connection between epigenetic changes and mood disorders. In this study, we performed a comprehensive search using PubMed and Google for the terms "epigenetics", "ageing", "miRNA", "schizophrenia", and "mood disorders" in the titles and abstracts of articles. Epigenetic changes during early life may play a crucial role in triggering severe mental disorders and shaping their clinical trajectory. Although these alterations can take place at any age, their impact may not be immediately evident or observable until later in life. Epigenetic modifications play a crucial role in the ageing process and challenge the prevailing belief that mutations are the primary driver of ageing. However, it is plausible that these epigenetic changes are a consequence of the disorder rather than its root cause. Moreover, both the disorder and the epigenetic alterations may be influenced by shared environmental or genetic factors. In the near future, we might be able to replace chronological age with biological age, based on the epigenetic clock, with the promise of providing greater therapeutic benefits. A wide range of epigenetic drugs are currently under development at various stages. Although their full effectiveness is yet to be realized, they show great potential in the treatment of cancer, psychiatric disorders, and other complex diseases.


Assuntos
Transtornos Mentais , MicroRNAs , Esquizofrenia , Humanos , Metilação de DNA , Epigênese Genética , Transtornos Mentais/genética , Transtornos Mentais/tratamento farmacológico , Envelhecimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA