Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 475: 116627, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453479

RESUMO

SMARCA2 and SMARCA4 are the ATPases of the SWI/SNF chromatin remodeling complex, which play a significant role in regulating transcriptional activity and DNA repair in cells. SMARCA2 has become an appealing synthetic-lethal, therapeutic target in oncology, as mutational loss of SMARCA4 in many cancers leads to a functional dependency on residual SMARCA2 activity. Thus, for therapeutic development, an important step is understanding any potential safety target-associated liabilities of SMARCA2 inhibition. To best mimic a SMARCA2 therapeutic, a tamoxifen-inducible (TAMi) conditional knockout (cKO) rat was developed using CRISPR technology to understand the safety profile of Smarca2 genetic ablation in a model system that avoids potential juvenile and developmental phenotypes. As the rat is the prototypical rodent species utilized in toxicology studies, a comprehensive toxicological and pathological assessment was conducted in both heterozygote and homozygous knockout rats at timepoints up to 28 days, alongside relevant corresponding controls. To our knowledge, this represents the first TAMi cKO rat model utilized for safety assessment evaluations. No significant target-associated phenotypes were observed when Smarca2 was ablated in mature (11- to 15-week-old) rats; however subsequent induction of SMARCA4 was evident that could indicate potential compensatory activity. Similar to mouse models, rat CreERT2-transgene and TAMi toxicities were characterized to avoid confounding study interpretation. In summary, a lack of significant safety findings in Smarca2 cKO rats highlights the potential for therapeutics targeting selective SMARCA2 ATPase activity; such therapies are predicted to be tolerated in patients without eliciting significant on-target toxicities.


Assuntos
Neoplasias , Tamoxifeno , Camundongos , Ratos , Animais , Tamoxifeno/toxicidade , Adenosina Trifosfatases , Mutação
2.
Toxicol Pathol ; 49(3): 634-646, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33349160

RESUMO

Fusion of biologic therapeutics to hyaluronic acid binding proteins, such as the link domain (LD) of Tumor necrosis factor (TNF)-Stimulated Gene-6 (TSG-6), is expected to increase vitreous residence time following intravitreal injection and provide for long-acting delivery. The toxicity of a single intravitreal dose of free TSG-6-LD and fusion proteins of TSG-6-LD and a nonbinding rabbit antibody fragment (RabFab) were assessed in New Zealand White rabbits. Animals administered free TSG-6-LD exhibited extensive lens opacities and variable retinal vascular attenuation, correlated with microscopic findings of lens and retinal degeneration. Similar but less severe findings were present in animals dosed with the RabFab-TSG-6-LD fusion proteins. In-life ocular inflammation was noted in all animals from 7-days postdose and was associated with high anti-RabFab antibody titers in animals administered fusion proteins. Inflammation and retinal degeneration were multifocally associated with evidence of retinal detachment, and hypertrophy and migration of vimentin, glial fibrillary acidic protein, and glutamine synthetase positive Müller cells to the outer nuclear layer. Further assessment of alternative hyaluronic acid binding protein fusions should consider the potential for retinal degeneration and enhanced immune responses early in development.


Assuntos
Retina , Degeneração Retiniana , Animais , Proteína Glial Fibrilar Ácida , Injeções Intravítreas , Coelhos , Degeneração Retiniana/induzido quimicamente
3.
Toxicol Pathol ; 48(3): 465-480, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32124659

RESUMO

Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.


Assuntos
Pirazóis/farmacologia , Piridinas/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Animais , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA