Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 38(1): 80-92, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35704678

RESUMO

Kidney surgery often includes organ ischaemia with a risk of acute kidney injury. The present study tested if treatment with the combined angiotensin II-angiotensin II receptor type 1 and neprilysin blocker Entresto (LCZ696, sacubitril/valsartan) protects filtration barrier and kidney function after ischaemia and partial nephrectomy (PN) in pigs. Single kidney glomerular filtration rate (GFR) by technetium-99m diethylene-triamine-pentaacetate clearance was validated (n = 6). Next, four groups of pigs were followed for 15 days (n = 24) after PN (one-third right kidney, 60 min ischaemia) + Entresto (49/51 mg/day; n = 8), PN + vehicle (n = 8), sham + Entresto (49/51 mg/day; n = 4) and sham + vehicle (n = 4). GFR, diuresis and urinary albumin were measured at baseline and from each kidney after 15 days. The sum of single-kidney GFR (right 25 ± 6 mL/min, left 31 ± 7 mL/min) accounted for the total GFR (56 ± 14 mL/min). Entresto had no effect on baseline blood pressure, p-creatinine, mid-regional pro-atrial natriuretic peptide (MR-proANP), heart rate and diuresis. After 15 days, Entresto increased GFR in the uninjured kidney (+23 ± 6 mL/min, P < .05) and reduced albuminuria from both kidneys. In the sham group, plasma MR-proANP was not altered by Entresto; it increased to similar levels 2 h after surgery with and without Entresto. Fractional sodium excretion increased with Entresto. Kidney histology and kidney injury molecule-1 in cortex tissue were not different. In conclusion, Entresto protects the filtration barrier and increases the functional adaptive response of the uninjured kidney.


Assuntos
Compostos de Bifenilo , Tetrazóis , Animais , Suínos , Valsartana , Aminobutiratos , Rim , Nefrectomia , Combinação de Medicamentos , Taxa de Filtração Glomerular
2.
Pediatr Nephrol ; 28(1): 83-92, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22945867

RESUMO

BACKGROUND: The aim of this study was to compare the ability of renal indicators [serum creatinine (SCr), cystatin C (SCysC)] and glomerular filtration rate (GFR)-models to discriminate normal and reduced renal function. As a single cut-off level will always lead to false classifications, we propose using two cut-off levels, dividing renal function into normal or reduced, with an intermediate "gray zone" of indeterminable results. METHODS: Glomerular filtration rate was measured by plasma clearance of (51)Cr-EDTA (13.7-147.4 mL/min/1.73 m(2)) in 119 children (age range 2.3-14.9 years). Reduced renal function was defined as a GFR of <82 mL/min/1.73 m(2). SCr, SCysC, age-normalized creatinine (SCr-ratio), and eight published GFR-models were compared for their ability to correctly classify renal function as normal or reduced. Cut-off levels were determined so as to give 99 % certainty outside the gray zone. RESULTS: The multivariable GFR-models by Schwartz et al. (J Am Soc Nephrol 2009; 20:629-637) and Zappitelli et al. (Am J Kidney Dis 2006; 48:221-230) and two models by Andersen et al. [Am J Kidney Dis 2012; 59(1):50-57: body cell mass (BCM)-model and Weight-model] performed significantly better than all other variables (P < 0.01), with the BCM-model performing the best (P < 0.05). The SCr-based Schwartz formula and SCr-ratio both performed better than SCr and SCysC. CONCLUSIONS: Among the 119 children enrolled in this study and the renal indicators tested, the BCM-model had the best diagnostic performance in terms of screening for normal or reduced renal function, and the SCr-ratio was a superior diagnostic tool to both SCr and SCysC.


Assuntos
Creatinina/sangue , Cistatina C/sangue , Taxa de Filtração Glomerular/fisiologia , Nefropatias/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Nefropatias/fisiopatologia , Testes de Função Renal/métodos , Masculino
3.
Dan Med J ; 59(7): B4486, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22759853

RESUMO

This PhD thesis is based on four individual studies including 131 children aged 2-14 years with nephro-urologic disorders. The majority (72%) of children had a normal renal function (GFR > 82 ml/min/1.73 square metres), and only 8% had a renal function < 50% of the normal mean value. The present thesis´ main aims were: 1) to develop a more accurate GFR model based on a novel theory of body cell mass (BCM) and cystatin C (CysC); 2) to investigate the diagnostic performance in comparison to other models as well as serum CysC and creatinine; 3) to validate the new models precision and validity. The model´s diagnostic performance was investigated in study I as the ability to detect changes in renal function (total day-to-day variation), and in study IV as the ability to discriminate between normal and reduced function. The model´s precision and validity were indirectly evaluated in study II and III, and in study I accuracy was estimated by comparison to reference GFR. Several prediction models based on CysC or a combination of CysC and serum creatinine have been developed for predicting GFR in children. Despite these efforts to improve GFR estimates, no alternative to exogenous methods has been found and the Schwartz´s formula based on height, creatinine and an empirically derived constant is still recommended for GFR estimation in children. However, the inclusion of BCM as a possible variable in a CysC-based prediction model has not yet been explored. As CysC is produced at a constant rate from all nucleated cells we hypothesize that including BCM in a new prediction model will increase accuracy of the GFR estimate. Study I aimed at deriving the new GFR-prediction model based on the novel theory of CysC and BCM and comparing the performance to previously published models. The BCM-model took the form GFR (mL/min) = 10.2 × (BCM/CysC)E 0.40 × (height × body surface area/Crea)E 0.65. The model predicted 99% within ± 30% of reference GFR, and 67% within ±10%. This was higher than any other model. The present model also had the highest R E2 and the narrowest 95% limits of agreement. If replacing BCM with weight (Weight-model) the results were almost as convincing. The total day-to-day variation of the GFR-estimate (7.7%) was low. The two new models are, however, still not sufficiently accurate to replace exogenous markers when GFR must be determined with high accuracy. Study II aimed at determining biological variation and analytical precision of serum CysC and creatinine. The precision of CysC (1.7%), and creatinine (2.5%) was very good and the day-to-day variation of CysC and creatinine (within-subject variation between two days) also proved very low (6.4% for both analytes). Because of a relatively low ratio between within-subject variation and between-subject variation neither CysC nor creatinine seems qualified to discriminate between normal and reduced renal function, which was also confirmed in study IV. However, the relatively low total day-to-day variation of 6.6% (CysC) and 6.9% (creatinine) indicate that both are suitable for detecting changes in renal function over time. Study III aimed at determining biological variation and analytical precision of BCM and all other parameters given by measurement by bioimpedance spectroscopy (BIS). Depending on parameter the precision was 0.3-0.8% in children ≥ 6 years and 0.5-2.4% in children < 6 years with a statistically significant difference between the two age-groups (p < 0.001). Within-day variation was 1.1-2.8% and between-day variation 2.4-5.7%. The median value of three repeated measurements is recommended in order to avoid incorrect measurements. Study IV aimed at investigating the diagnostic performance of the BCM-model by: 1) Determining cut-off levels for a three-sided diagnostic procedure with the following outcomes: normal renal function, reduced renal function, indeterminable; 2) Calculating the diagnostic probabilities of reduced renal function for the indeterminable results. The lower the number of children in between cut-off levels, the better the diagnostic performance. The BCM-model resulted in the smallest percentage (39%) of indeterminate children in need for further investigation. In conclusion, with the models developed in the present thesis we are able to provide the clinician with both a reasonably accurate estimate of renal function and a probability of reduced renal function. Furthermore, the positive results from study II and III on precision and biological variation indicate that CysC, creatinine and BCM are very stable variables, which is an indirect validation of the BCM-model´s precision and validity. This is also reflected in the relatively low total day-to-day variation of the GFR-estimate.


Assuntos
Composição Corporal , Cistatina C/sangue , Taxa de Filtração Glomerular , Rim/fisiologia , Modelos Biológicos , Insuficiência Renal/fisiopatologia , Adolescente , Criança , Pré-Escolar , Creatinina/sangue , Espectroscopia Dielétrica , Humanos , Lactente , Valor Preditivo dos Testes , Curva ROC , Insuficiência Renal/diagnóstico
4.
Am J Kidney Dis ; 59(1): 50-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22037490

RESUMO

BACKGROUND: Aiming to develop a more accurate cystatin C-based model for estimation of glomerular filtration rate (GFR) in children, we hypothesized that inclusion of body cell mass (BCM) would increase the accuracy of the GFR estimate in comparison to a well-established GFR reference method. STUDY DESIGN: Diagnostic test accuracy study. SETTINGS & PARTICIPANTS: 119 children (mean age, 8.8; range, 2.3-14.9 years) referred for GFR measurement by chromium 51 ethylenediaminetetraacetic acid ((51)Cr-EDTA) clearance (mean GFR, 98; range, 13.7-147.4 mL/min/1.73 m(2)). INDEX TEST: GFR estimations by the 2 prediction models resulting from theoretical considerations corroborated by forward stepwise variable selection: GFR (mL/min) = 0.542 × (BCM/SCysC)(0.40) × (height × BSA/SCr)(0.65) and GFR (mL/min) = 0.426 × (weight/SCysC)(0.39) × (height × BSA/SCr)(0.64), where SCysC is serum cystatin C level, BSA is body surface area, and SCr is serum creatinine level. The accuracy and precision of these models were compared with 7 previously published prediction models using random subsampling cross-validation. Local constants and coefficients were calculated for all models. Root mean square error, R(2), and percentage of predictions within ±10% and ±30% of the reference GFR were calculated for all models. Based on 1,000 runs of the cross-validation procedure, median values and 2.5th and 97.5th quantiles of the validation parameters were calculated. REFERENCE TEST: GFR measurement by (51)Cr-EDTA clearance. RESULTS: The BCM model predicted 98% within ±30% of reference GFR and 66% within ±10%, which was higher than for any other model. The weight model predicted 97.5% within ±30% of reference GFR and 62% within ±10%. The BCM model had the highest R(2) and the smallest root mean square error. LIMITATIONS: Included only 9 children with GFR <60 mL/min/1.73 m(2). Lack of independent validation cohort. CONCLUSIONS: The novel BCM model predicts GFR with higher accuracy than previously published models. The weight model is almost as accurate as the BCM model and allows for GFR estimation without knowledge of BCM. However, endogenous methods are still not sufficiently accurate to replace exogenous markers when GFR must be determined with high accuracy.


Assuntos
Creatinina/sangue , Cistatina C/sangue , Taxa de Filtração Glomerular , Adolescente , Criança , Pré-Escolar , Espectroscopia Dielétrica , Feminino , Previsões , Humanos , Masculino , Reprodutibilidade dos Testes
5.
Pediatr Nephrol ; 24(5): 929-41, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18839216

RESUMO

Our aim was to evaluate published methods that use serum cystatin C (s-CysC) for measuring glomerular filtration rate (GFR) in children and to discuss advantages and limitations of s-CysC and of established GFR methods. A comprehensive literature review of clinical studies in children evaluating s-CysC or CysC-based formulas and plasma creatinine or creatinine-based formulas against an exogenous reference method using receiver operating characteristics (ROC) curves or Bland-Altman plots is presented. The comparison of s-CysC with plasma creatinine indicated that s-CysC was superior to plasma creatinine in five of 13 studies; four studies showed no difference, and, in four studies, no statistical comparison was made. Comparison of s-CysC and the Schwartz formula showed that s-CysC was superior to the Schwartz formula in two of seven studies; two studies demonstrated no difference, and, in one study, the Schwartz formula was superior to s-CysC. In two studies no statistical comparison was made. The CysC-based prediction equations all had high accuracy but low agreement when compared with a reference GFR, in the range of 30-40% at best. S-CysC is most likely superior to plasma creatinine and at least equal to creatinine-based formulas. CysC-based prediction equations are at least as good as creatinine-based formulas but cannot replace exogenous methods.


Assuntos
Creatinina/sangue , Cistatina C/sangue , Taxa de Filtração Glomerular/fisiologia , Rim/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Valor Preditivo dos Testes , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA