Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 7, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243336

RESUMO

BACKGROUND: Cellulose degradation by cellulases has been studied for decades due to the potential of using lignocellulosic biomass as a sustainable source of bioethanol. In plant cell walls, cellulose is bonded together and strengthened by the polyphenolic polymer, lignin. Because lignin is tightly linked to cellulose and is not digestible by cellulases, is thought to play a dominant role in limiting the efficient enzymatic degradation of plant biomass. Removal of lignin via pretreatments currently limits the cost-efficient production of ethanol from cellulose, motivating the need for a better understanding of how lignin inhibits cellulase-catalyzed degradation of lignocellulose. Work to date using bulk assays has suggested three possible inhibition mechanisms: lignin blocks access of the enzyme to cellulose, lignin impedes progress of the enzyme along cellulose, or lignin binds cellulases directly and acts as a sink. RESULTS: We used single-molecule fluorescence microscopy to investigate the nanoscale dynamics of Cel7A from Trichoderma reesei, as it binds to and moves along purified bacterial cellulose in vitro. Lignified cellulose was generated by polymerizing coniferyl alcohol onto purified bacterial cellulose, and the degree of lignin incorporation into the cellulose meshwork was analyzed by optical and electron microscopy. We found that Cel7A preferentially bound to regions of cellulose where lignin was absent, and that in regions of high lignin density, Cel7A binding was inhibited. With increasing degrees of lignification, there was a decrease in the fraction of Cel7A that moved along cellulose rather than statically binding. Furthermore, with increasing lignification, the velocity of processive Cel7A movement decreased, as did the distance that individual Cel7A molecules moved during processive runs. CONCLUSIONS: In an in vitro system that mimics lignified cellulose in plant cell walls, lignin did not act as a sink to sequester Cel7A and prevent it from interacting with cellulose. Instead, lignin both blocked access of Cel7A to cellulose and impeded the processive movement of Cel7A along cellulose. This work implies that strategies for improving biofuel production efficiency should target weakening interactions between lignin and cellulose surface, and further suggest that nonspecific adsorption of Cel7A to lignin is likely not a dominant mechanism of inhibition.

2.
J Plant Physiol ; 274: 153709, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597109

RESUMO

Pectin, cellulose, and hemicelluloses are major components of primary cell walls in plants. In addition to cell adhesion and expansion, pectin plays a central role in seed mucilage. Seed mucilage contains abundant pectic rhamnogalacturonan-I (RG-I) and lower amounts of homogalacturonan (HG), cellulose, and hemicelluloses. Previously, accumulated evidence has addressed the role of pectin RG-I in mucilage production and adherence. However, less is known about the function of pectin HG in seed coat mucilage formation. In this study, we analyzed a novel mutant, designated things fall apart2 (tfa2), which contains a mutation in HG methyltransferase QUASIMODO2 (QUA2). Etiolated tfa2 seedlings display short hypocotyls and adhesion defects similar to qua2 and tumorous shoot development2 (tsd2) alleles, and show seed mucilage defects. The diminished uronic acid content and methylesterification degree of HG in mutant seed mucilage indicate the role of HG in the formation of seed mucilage. Cellulosic rays in mutant mucilage are collapsed. The epidermal cells of seed coat in tfa2 and tsd2 display deformed columellae and reduced radial wall thickness. Under polyethylene glycol treatment, seeds from these three mutant alleles exhibit reduced germination rates. Together, these data emphasize the requirement of pectic HG biosynthesis for the synthesis of seed mucilage, and the functions of different pectin domains together with cellulose in regulating its formation, expansion, and release.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Pectinas/metabolismo , Sementes/genética , Sementes/metabolismo
3.
Plant Cell ; 34(1): 72-102, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34529074

RESUMO

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.


Assuntos
Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Biologia Celular , Desenvolvimento Vegetal
4.
Science ; 370(6518): 819-823, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33184208

RESUMO

In Arabidopsis thaliana, lateral roots initiate in a process preceded by periodic gene expression known as the root clock. We identified the vesicle-trafficking regulator GNOM and its suppressor, ADENOSINE PHOSPHATE RIBOSYLATION FACTOR GTPase ACTIVATION PROTEIN DOMAIN3, as root clock regulators. GNOM is required for the proper distribution of pectin, a mediator of intercellular adhesion, whereas the pectin esterification state is essential for a functional root clock. In sites of lateral root primordia emergence, both esterified and de-esterified pectin variants are differentially distributed. Using a reverse-genetics approach, we show that genes controlling pectin esterification regulate the root clock and lateral root initiation. These results indicate that the balance between esterified and de-esterified pectin states is essential for proper root clock function and the subsequent initiation of lateral root primordia.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Relógios Biológicos/genética , Parede Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Pectinas/metabolismo , Raízes de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esterificação/genética , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , NADPH Oxidases/metabolismo , Raízes de Plantas/genética , Vesículas Transportadoras/fisiologia
5.
Front Plant Sci ; 7: 1309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630649

RESUMO

Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependencies of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In summary, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis stems and allows for the dissection of key biochemical and enzymatic factors controlling lignification.

6.
Plant J ; 85(3): 437-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26676799

RESUMO

In plants, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan-II (RG-II). Incubation of 4-day-old light-grown Arabidopsis seedlings or tobacco BY-2 cells with 8-azido 8-deoxy Kdo (Kdo-N3 ) followed by coupling to an alkyne-containing fluorescent probe resulted in the specific in muro labelling of RG-II through a copper-catalysed azide-alkyne cycloaddition reaction. CMP-Kdo synthetase inhibition and competition assays showing that Kdo and D-Ara, a precursor of Kdo, but not L-Ara, inhibit incorporation of Kdo-N3 demonstrated that incorporation of Kdo-N3 occurs in RG-II through the endogenous biosynthetic machinery of the cell. Co-localisation of Kdo-N3 labelling with the cellulose-binding dye calcofluor white demonstrated that RG-II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo-N3 and an alkynated derivative of L-fucose that incorporates into rhamnogalacturonan I, co-localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click-mediated labelling with Kdo-N3 provides an efficient method to study the synthesis and redistribution of RG-II during root growth.


Assuntos
Arabidopsis/ultraestrutura , Parede Celular/ultraestrutura , Nucleotidiltransferases/antagonistas & inibidores , Pectinas/química , Açúcares Ácidos/química , Azidas/química , Células Cultivadas , Raízes de Plantas/ultraestrutura , Plântula/ultraestrutura , Coloração e Rotulagem , Nicotiana/ultraestrutura
7.
Mol Plant Pathol ; 17(7): 1063-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26637973

RESUMO

Several plant viruses encode movement proteins (MPs) classified in the 30K superfamily. Despite a great functional diversity, alignment analysis of MP sequences belonging to the 30K superfamily revealed the presence of a central core region, including amino acids potentially critical for MP structure and functionality. We performed alanine-scanning mutagenesis of the Ourmia melon virus (OuMV) MP, and studied the effects of amino acid substitutions on MP properties and virus infection. We identified five OuMV mutants that were impaired in systemic infection in Nicotiana benthamiana and Arabidopsis thaliana, and two mutants showing necrosis and pronounced mosaic symptoms, respectively, in N. benthamiana. Green fluorescent protein fusion constructs (GFP:MP) of movement-defective MP alleles failed to localize in distinct foci at the cell wall, whereas a GFP fusion with wild-type MP (GFP:MPwt) mainly co-localized with plasmodesmata and accumulated at the periphery of epidermal cells. The movement-defective mutants also failed to produce tubular protrusions in protoplasts isolated from infected leaves, suggesting a link between tubule formation and the ability of OuMV to move. In addition to providing data to support the importance of specific amino acids for OuMV MP functionality, we predict that these conserved residues might be critical for the correct folding and/or function of the MP of other viral species in the 30K superfamily.


Assuntos
Aminoácidos/metabolismo , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/citologia , Arabidopsis/virologia , Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Peso Molecular , Proteínas Mutantes/metabolismo , Epiderme Vegetal/citologia , Folhas de Planta/virologia , Plasmodesmos/metabolismo , Protoplastos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Nicotiana/virologia
8.
J Exp Bot ; 66(14): 4295-304, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25922482

RESUMO

Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses.


Assuntos
Brachypodium/química , Corantes Fluorescentes/química , Lignina/química , Frações Subcelulares/química
9.
J Neurosci ; 31(15): 5855-64, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21490227

RESUMO

Local hyperconnectivity in the neocortex is a hypothesized pathophysiological state in autism spectrum disorder (ASD). MET, a receptor tyrosine kinase that regulates dendrite and spine morphogenesis, has been established as a risk gene for ASD. Here, we analyzed the synaptic circuit organization of identified pyramidal neurons in the anterior frontal cortex of mice with a dorsal pallium-derived, conditional knock-out (cKO) of Met. Synaptic mapping by glutamate uncaging identified layer 2/3 as the main source of local excitatory input to layer 5 projection neurons in controls. In both cKO and heterozygotes, this pathway was stronger by a factor of approximately 2. This increase was both sublayer and projection-class specific, restricted to corticostriatal neurons in upper layer 5B and not neighboring corticopontine neurons. Paired recordings in cKO slices demonstrated increased unitary connectivity. We propose that excitatory hyperconnectivity in specific neocortical microcircuits constitutes a physiological basis for Met-mediated ASD risk.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Vias Neurais/fisiopatologia , Proteínas Proto-Oncogênicas c-met/genética , Animais , Mapeamento Encefálico , Fenômenos Eletrofisiológicos , Lobo Frontal/fisiopatologia , Deleção de Genes , Globo Pálido/fisiopatologia , Ácido Glutâmico/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Estimulação Luminosa , Ponte/fisiopatologia , Células Piramidais/fisiopatologia , Transdução de Sinais , Sinapses
10.
Biochim Biophys Acta ; 1798(6): 1029-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20138822

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel that is present in a variety of epithelial cell types, and usually expressed in the luminal membrane. In contrast, prestin (SLC26A5) is a voltage-dependent motor protein, which is present in the basolateral membrane of cochlear outer hair cells (OHCs), and plays an important role in the frequency selectivity and sensitivity of mammalian hearing. By using in situ hybridization and immunofluorescence, we found that both mRNA and protein of CFTR are present in OHCs, and that CFTR localizes in both the apical and the lateral membranes. CFTR was not detected in the lateral membrane of inner hair cells (IHCs) or in that of OHCs derived from prestin-knockout mice, i.e., in instances where prestin is not expressed. These results suggest that prestin may interact physically with CFTR in the lateral membrane of OHCs. Immunoprecipitation experiments confirmed a prestin-CFTR interaction. Because chloride is important for prestin function and for the efferent-mediated inhibition of cochlear output, the prestin-directed localization of CFTR to the lateral membrane of OHCs has a potential physiological significance. Aside from its role as a chloride channel, CFTR is known as a regulator of multiple protein functions, including those of the solute carrier family 26 (SLC26). Because prestin is in the SLC26 family, several members of which interact with CFTR, we explored the potential modulatory relationship associated with a direct, physical interaction between prestin and CFTR. Electrophysiological experiments demonstrated that cAMP-activated CFTR is capable of enhancing voltage-dependent charge displacement, a signature of OHC motility, whereas prestin does not affect the chloride conductance of CFTR.


Assuntos
Membrana Celular/metabolismo , AMP Cíclico/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas Motores Moleculares/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Cloretos/metabolismo , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Proteínas Motores Moleculares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Neurosci Methods ; 162(1-2): 229-36, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17363068

RESUMO

Outer hair cells (OHCs) play an important role in frequency selectivity and signal amplification in the mammalian cochlea. Because OHCs are relatively few in number and a minority of the cells in the cochlea, separating and isolating them for applications such as cDNA library creation and proteomic studies is a challenging task. Laser capture microdissection (LCM) is designed to capture cells from very thin tissue sections, it can accurately isolate specific cells from large regions of tissue for RNA, DNA, and proteomic studies. Due to the constraints of cochlear anatomy, thin sections of the cochlea contain small numbers of OHCs. Therefore, we adapted the LCM technique to isolate OHCs from organ of Corti whole-mounts, each of which contain hundreds of OHCs that are simultaneously accessible and collectable. For comparison, we also used a more traditional mechanical dissection. The quality of cDNA derived from the OHCs collected with LCM and with the traditional mechanical method are compared and the merits and limitations of the techniques discussed. A similar approach can also be used to isolate large quantities of inner hair cells and selected supporting cells from the whole-mount cochlear preparation.


Assuntos
Cóclea/citologia , Células Epiteliais/citologia , Células Ciliadas Auditivas Externas/citologia , Microdissecção/métodos , Animais , Cóclea/fisiologia , Primers do DNA , DNA Complementar/genética , Dessecação , Células Epiteliais/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Camundongos , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA