Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 173(1): 156-170, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31651976

RESUMO

Breast cancer (BC) is the most common cancer among women. Fortunately, BC survival rates have increased because the implementation of adjuvant chemotherapy leading to a growing population of survivors. However, chemotherapy-induced cognitive impairments (CICIs) affect up to 75% of BC survivors and may be driven by inflammation and oxidative stress. Chemotherapy-induced cognitive impairments can persist 20 years and hinder survivors' quality of life. To identify early effects of CMF administration in mice, we chose to evaluate adult female mice at 2-week postchemotherapy. Mice received weekly IP administration of CMF (or saline) for 4 weeks, completed behavioral testing, and were sacrificed 2 weeks following their final CMF injection. Behavioral results indicated long-term memory (LTM) impairments postchemotherapy, but did not reveal short-term memory deficits. Dendritic morphology and spine data found increases in overall spine density within CA1 basal and CA3 basal dendrites, but no changes in DG, CA1 apical, or CA3 apical dendrites. Further analysis revealed decreases in arborization across the hippocampus (DG, CA1 apical and basal, CA3 apical and basal). These physiological changes within the hippocampus correlate with our behavioral data indicating LTM impairments following CMF administration in female mice 2-week postchemotherapy. Hippocampal cytokine analysis identified decreases in IL-1α, IL-1ß, IL-3, IL-10, and TNF-α levels.


Assuntos
Ciclofosfamida/toxicidade , Fluoruracila/toxicidade , Hipocampo/efeitos dos fármacos , Metotrexato/toxicidade , Neurônios/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Região CA1 Hipocampal , Quimioterapia Adjuvante , Dendritos , Espinhas Dendríticas , Modelos Animais de Doenças , Feminino , Camundongos , Qualidade de Vida
2.
Radiat Res ; 191(3): 278-294, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664396

RESUMO

The radiation environment in space remains a major concern for manned space exploration, as there is currently no shielding material capable of fully protecting flight crews. Additionally, there is growing concern for the social and cognitive welfare of astronauts, due to prolonged radiation exposure and confinement they will experience on a mission to Mars. In this artice, we report on the late effects of 16O-particle radiation on social and cognitive behavior and neuronal morphology in the hippocampus of adult female mice. Six-month-old mice received 16O-particle whole-body irradiation at doses of either 0.25 or 0.1 Gy (600 MeV/n; 18-33 cGy/min) at the NASA's Space Radiation Laboratory in Upton, NY. At nine months postirradiation, the animals underwent behavioral testing in the three-chamber sociability, novel object recognition and Y-maze paradigms. Exposure to 0.1 or 0.25 Gy 16O significantly impaired object memory, a 0.25 Gy dose impaired social novelty learning, but neither dosage impaired short-term spatial memory. We observed significant decreases in mushroom spine density and dendrite morphology in the dentate gyrus, cornu ammonis 3, 2 and 1 of the hippocampus, which are critical areas for object novelty and sociability processing. Our data suggest exposure to 16O modulates hippocampal pyramidal and granular neurons and induces behavioral deficits at a time point of nine months after exposure in females.


Assuntos
Comportamento Animal/efeitos da radiação , Cognição/efeitos da radiação , Hipocampo/fisiologia , Hipocampo/efeitos da radiação , Oxigênio/efeitos adversos , Comportamento Social , Animais , Espinhas Dendríticas/efeitos da radiação , Relação Dose-Resposta à Radiação , Meio Ambiente Extraterreno , Feminino , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
3.
Toxicol Sci ; 162(2): 462-474, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228376

RESUMO

Postchemotherapy cognitive impairment, or PCCI, is a common complaint, particularly among breast cancer patients. However, the exact nature of PCCI appears complex. To model the human condition, ovariectomized C57BL/6J mice were treated intravenous weekly for 4 weeks with saline, 2 mg/kg doxorubicin (DOX), 50 mg/kg cyclophosphamide (CYP), or DOX + CYP. For the subsequent 10 weeks, mice were assessed on several behavioral tests, including those measuring spatial learning and memory. After sacrifice, hippocampal spine density and morphology in the dentate gyrus, CA1, and CA3 regions were measured. Additionally, hippocampal levels of total glutathione, glutathione disulfide, MnSOD, CuZnSOD, and cytokines were measured. Body weight decreased in all groups during treatment, but recovered post-treatment. Most behaviors were unaffected by drug treatment: Open field activity, motor coordination, grip strength, water maze and Barnes maze performance, buried food test performance, and novel object and object location recognition tests. There were some significant effects of CYP and DOX + CYP treatment during the initial test of home cage behavior, but these did not persist into the second and third test times. Density of stubby spines, but not mushroom or thin spines, in the dentate gyrus was significantly decreased in the DOX, CYP, and DOX + CYP treatment groups. There were no significant effects in the CA1 or CA3 regions. CuZnSOD levels were significantly increased in DOX + CYP-treated mice; other hippocampal antioxidant levels were unaffected. Most cytokines showed no treatment-related effects, but IL-1ß, IL-6, and IL-12 were slightly reduced in mice treated with DOX + CYP. Although the animal model, route of exposure, and DOX and CYP doses used here were reflective of human exposure, there were only sporadic effects due to chemotherapeutic treatment.


Assuntos
Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Ciclofosfamida/toxicidade , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Animais , Antioxidantes/metabolismo , Disfunção Cognitiva/metabolismo , Ciclofosfamida/administração & dosagem , Giro Denteado/efeitos dos fármacos , Giro Denteado/enzimologia , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Injeções Intravenosas , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Ovariectomia
4.
Clin Cancer Res ; 21(20): 4607-18, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25979485

RESUMO

PURPOSE: PD-1/PD-L1 signaling promotes tumor growth while inhibiting effector cell-mediated antitumor immune responses. Here, we assessed the impact of single and dual blockade of PD-1/PD-L1, alone or in combination with lenalidomide, on accessory and immune cell function as well as multiple myeloma cell growth in the bone marrow (BM) milieu. EXPERIMENTAL DESIGN: Surface expression of PD-1 on immune effector cells, and PD-L1 expression on CD138(+) multiple myeloma cells and myeloid-derived suppressor cells (MDSC) were determined in BM from newly diagnosed (ND) multiple myeloma and relapsed/refractory (RR) multiple myeloma versus healthy donor (HD). We defined the impact of single and dual blockade of PD-1/PD-L1, alone and with lenalidomide, on autologous anti-multiple myeloma immune response and tumor cell growth. RESULTS: Both ND and RR patient multiple myeloma cells have increased PD-L1 mRNA and surface expression compared with HD. There is also a significant increase in PD-1 expression on effector cells in multiple myeloma. Importantly, PD-1/PD-L1 blockade abrogates BM stromal cell (BMSC)-induced multiple myeloma growth, and combined blockade of PD-1/PD-L1 with lenalidomide further inhibits BMSC-induced tumor growth. These effects are associated with induction of intracellular expression of IFNγ and granzyme B in effector cells. Importantly, PD-L1 expression in multiple myeloma is higher on MDSC than on antigen-presenting cells, and PD-1/PD-L1 blockade inhibits MDSC-mediated multiple myeloma growth. Finally, lenalidomide with PD-1/PD-L1 blockade inhibits MDSC-mediated immune suppression. CONCLUSIONS: Our data therefore demonstrate that checkpoint signaling plays an important role in providing the tumor-promoting, immune-suppressive microenvironment in multiple myeloma, and that PD-1/PD-L1 blockade induces anti-multiple myeloma immune response that can be enhanced by lenalidomide, providing the framework for clinical evaluation of combination therapy.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Talidomida/análogos & derivados , Anticorpos Monoclonais/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno B7-H1/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Lenalidomida , Receptor de Morte Celular Programada 1/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Talidomida/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA