Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Annu Rev Cancer Biol ; 4: 197-220, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34113749

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) are complex cellular processes where cells undergo dramatic changes in signaling, transcriptional programming, and cell shape, while directing the exit of cells from the epithelium and promoting migratory properties of the resulting mesenchyme. EMTs are essential for morphogenesis during development and are also a critical step in cancer progression and metastasis formation. Here we provide an overview of the molecular regulation of the EMT process during embryo development, focusing on chick and mouse gastrulation and neural crest development. We go on to describe how EMT regulators participate in the progression of pancreatic and breast cancer in mouse models, and discuss the parallels with developmental EMTs and how these help to understand cancer EMTs. We also highlight the differences between EMTs in tumor and in development to arrive at a broader view of cancer EMT. We conclude by discussing how further advances in the field will rely on in vivo dynamic imaging of the cellular events of EMT.

2.
Trends Cell Biol ; 27(2): 110-125, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27765513

RESUMO

The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Transdução de Sinais , Animais , Humanos , Cinesinas/metabolismo
3.
Elife ; 5: e12034, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26809587

RESUMO

Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis.


Assuntos
Epitélio/embriologia , Placa Neural/embriologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Técnicas de Inativação de Genes , Camundongos , Organogênese , PTEN Fosfo-Hidrolase/genética , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil
4.
PLoS Genet ; 11(10): e1005551, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496195

RESUMO

Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.


Assuntos
Proteínas do Olho/genética , Glucosiltransferases/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptor Notch1/metabolismo , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário , Proteínas do Olho/metabolismo , Gastrulação/genética , Glucosiltransferases/metabolismo , Glicosilação , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional/genética , Receptor Notch1/genética , Transdução de Sinais
5.
Development ; 142(7): 1305-14, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25742799

RESUMO

The genetic control of mammalian epithelial polarity and dynamics can be studied in vivo at cellular resolution during morphogenesis of the mouse neural tube. The mouse neural plate is a simple epithelium that is transformed into a columnar pseudostratified tube over the course of ∼ 24 h. Apical F-actin is known to be important for neural tube closure, but the precise roles of actin dynamics in the neural epithelium are not known. To determine how the organization of the neural epithelium and neural tube closure are affected when actin dynamics are blocked, we examined the cellular basis of the neural tube closure defect in mouse mutants that lack the actin-severing protein cofilin 1 (CFL1). Although apical localization of the adherens junctions, the Par complex, the Crumbs complex and SHROOM3 is normal in the mutants, CFL1 has at least two distinct functions in the apical and basal domains of the neural plate. Apically, in the absence of CFL1 myosin light chain does not become phosphorylated, indicating that CFL1 is required for the activation of apical actomyosin required for neural tube closure. On the basal side of the neural plate, loss of CFL1 has the opposite effect on myosin: excess F-actin and myosin accumulate and the ectopic myosin light chain is phosphorylated. The basal accumulation of F-actin is associated with the assembly of ectopic basal tight junctions and focal disruptions of the basement membrane, which eventually lead to a breakdown of epithelial organization.


Assuntos
Polaridade Celular , Cofilina 1/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Morfogênese , Placa Neural/embriologia , Placa Neural/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Membrana Basal/metabolismo , Biomarcadores/metabolismo , Contagem de Células , Forma Celular , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/ultraestrutura , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Placa Neural/citologia , Placa Neural/ultraestrutura , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Fosforilação , Proteínas de Junções Íntimas/metabolismo
6.
Genes Dev ; 28(24): 2764-77, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512563

RESUMO

Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified ß-Pix. Genetic deletion of ß-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that ß-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development.


Assuntos
Endoderma/citologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Movimento Celular/genética , Embrião de Mamíferos , Células Epiteliais/citologia , Deleção de Genes , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transporte Proteico/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Vísceras/citologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(15): E1491-500, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706806

RESUMO

Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4(-/-) mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4(-/-) embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4(-/-) p53(-/-) double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4(-/-) mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Centríolos/patologia , Mitose/fisiologia , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Análise de Variância , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Cruzamentos Genéticos , Imunofluorescência , Genótipo , Hibridização In Situ , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos , Proteína Supressora de Tumor p53/genética
9.
Dev Biol ; 364(2): 192-201, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22342906

RESUMO

Pten, the potent tumor suppressor, is a lipid phosphatase that is best known as a regulator of cell proliferation and cell survival. Here we show that mouse embryos that lack Pten have a striking set of morphogenetic defects, including the failure to correctly specify the anterior-posterior body axis, that are not caused by changes in proliferation or cell death. The majority of Pten null embryos express markers of the primitive streak at ectopic locations around the embryonic circumference, rather than at a single site at the posterior of the embryo. Epiblast-specific deletion shows that Pten is not required in the cells of the primitive streak; instead, Pten is required for normal migration of cells of the Anterior Visceral Endoderm (AVE), an extraembryonic organizer that controls the position of the streak. Cells of the wild-type AVE migrate within the visceral endoderm epithelium from the distal tip of the embryo to a position adjacent to the extraembryonic region. In all Pten null mutants, AVE cells move a reduced distance and disperse in random directions, instead of moving as a coordinated group to the anterior of the embryo. Aberrant AVE migration is associated with the formation of ectopic F-actin foci, which indicates that absence of Pten disrupts the actin-based migration of these cells. After the initiation of gastrulation, embryos that lack Pten in the epiblast show defects in the migration of mesoderm and/or endoderm. The findings suggest that Pten has an essential and general role in the control of mammalian collective cell migration.


Assuntos
Padronização Corporal , Movimento Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Animais , Endoderma/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , PTEN Fosfo-Hidrolase/genética , Gravidez
10.
Hum Mol Genet ; 21(8): 1808-23, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22228095

RESUMO

Mutations in components of the intraflagellar transport (IFT) machinery required for assembly and function of the primary cilium cause a subset of human ciliopathies characterized primarily by skeletal dysplasia. Recently, mutations in the IFT-A gene IFT144 have been described in patients with Sensenbrenner and Jeune syndromes, which are associated with short ribs and limbs, polydactyly and craniofacial defects. Here, we describe an N-ethyl-N-nitrosourea-derived mouse mutant with a hypomorphic missense mutation in the Ift144 gene. The mutant twinkle-toes (Ift144(twt)) phenocopies a number of the skeletal and craniofacial anomalies seen in patients with human skeletal ciliopathies. Like other IFT-A mouse mutants, Ift144 mutant embryos display a generalized ligand-independent expansion of hedgehog (Hh) signalling, in spite of defective ciliogenesis and an attenuation of the ability of mutant cells to respond to upstream stimulation of the pathway. This enhanced Hh signalling is consistent with cleft palate and polydactyly phenotypes in the Ift144(twt) mutant, although extensive rib branching, fusion and truncation phenotypes correlate with defects in early somite patterning and may reflect contributions from multiple signalling pathways. Analysis of embryos harbouring a second allele of Ift144 which represents a functional null, revealed a dose-dependent effect on limb outgrowth consistent with the short-limb phenotypes characteristic of these ciliopathies. This allelic series of mouse mutants provides a unique opportunity to uncover the underlying mechanistic basis of this intriguing subset of ciliopathies.


Assuntos
Anormalidades Múltiplas/genética , Cílios , Anormalidades Craniofaciais/genética , Proteínas/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/metabolismo , Animais , Mapeamento Cromossômico , Cílios/fisiologia , Cílios/ultraestrutura , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/metabolismo , Proteínas do Citoesqueleto , Embrião de Mamíferos , Fatores de Crescimento de Fibroblastos/metabolismo , Membro Anterior/anormalidades , Membro Anterior/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutagênese , Mutação de Sentido Incorreto , Fenótipo , Polidactilia/embriologia , Polidactilia/genética , Polidactilia/metabolismo , Proteínas/química , Costelas/anormalidades , Transdução de Sinais
11.
Development ; 138(22): 4921-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22007132

RESUMO

Protein kinase A (PKA) is an evolutionarily conserved negative regulator of the hedgehog (Hh) signal transduction pathway. PKA is known to be required for the proteolytic processing event that generates the repressor forms of the Ci and Gli transcription factors that keep target genes off in the absence of Hh. Here, we show that complete loss of PKA activity in the mouse leads to midgestation lethality and a completely ventralized neural tube, demonstrating that PKA is as strong a negative regulator of the sonic hedgehog (Shh) pathway as patched 1 (Ptch1) or suppressor of fused (Sufu). Genetic analysis shows that although PKA is important for production of the repressor form of Gli3, the principal function of PKA in the Shh pathway in neural development is to restrain activation of Gli2. Activation of the Hh pathway in PKA mutants depends on cilia, and the catalytic and regulatory subunits of PKA are localized to a compartment at the base of the primary cilia, just proximal to the basal body. The data show that PKA does not affect cilia length or trafficking of smoothened (Smo) in the cilium. Instead, we find that there is a significant increase in the level of Gli2 at the tips of cilia of PKA-null cells. The data suggest a model in which PKA acts at the base of the cilium after Gli proteins have transited the primary cilium; in this model the sequential movement of Gli proteins between compartments in the cilium and at its base controls accessibility of Gli proteins to PKA, which determines the fates of Gli proteins and the activity of the Shh pathway.


Assuntos
Padronização Corporal/genética , Cílios/genética , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Tubo Neural/embriologia , Animais , Padronização Corporal/fisiologia , Catálise , Células Cultivadas , Cílios/metabolismo , Cílios/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Embrião de Mamíferos , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/agonistas , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/metabolismo , Tubo Neural/fisiologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Distribuição Tecidual , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
12.
Hum Mol Genet ; 20(19): 3725-37, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21653639

RESUMO

The primary cilium is emerging as a crucial regulator of signaling pathways central to vertebrate development and human disease. We identified atrioventricular canal 1 (avc1), a mouse mutation that caused VACTERL association with hydrocephalus, or VACTERL-H. We showed that avc1 is a hypomorphic mutation of intraflagellar transport protein 172 (Ift172), required for ciliogenesis and Hedgehog (Hh) signaling. Phenotypically, avc1 caused VACTERL-H but not abnormalities in left-right (L-R) axis formation. Avc1 resulted in structural cilia defects, including truncated cilia in vivo and in vitro. We observed a dose-dependent requirement for Ift172 in ciliogenesis using an allelic series generated with Ift172(avc1) and Ift172(wim), an Ift172 null allele: cilia were present on 42% of avc1 mouse embryonic fibroblast (MEF) and 28% of avc1/wim MEFs, in contrast to >90% of wild-type MEFs. Furthermore, quantitative cilium length analysis identified two specific cilium populations in mutant MEFS: a normal population with normal IFT and a truncated population, 50% of normal length, with disrupted IFT. Cells from wild-type embryos had predominantly full-length cilia, avc1 embryos, with Hh signaling abnormalities but not L-R abnormalities, had cilia equally divided between full-length and truncated, and avc1/wim embryos, with both Hh signaling and L-R abnormalities, were primarily truncated. Truncated Ift172 mutant cilia showed defects of the distal ciliary axoneme, including disrupted IFT88 localization and Hh-dependent Gli2 localization. We propose a model in which mutation of Ift172 results in a specific class of abnormal cilia, causing disrupted Hh signaling while maintaining L-R axis determination, and resulting in the VACTERL-H phenotype.


Assuntos
Cardiopatias Congênitas/genética , Hidrocefalia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Deformidades Congênitas dos Membros/genética , Camundongos/genética , Proteínas Adaptadoras de Transdução de Sinal , Alelos , Canal Anal/anormalidades , Canal Anal/embriologia , Canal Anal/metabolismo , Animais , Cílios/genética , Cílios/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Esôfago/anormalidades , Esôfago/embriologia , Esôfago/metabolismo , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hidrocefalia/embriologia , Hidrocefalia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/anormalidades , Rim/embriologia , Rim/metabolismo , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/metabolismo , Camundongos/metabolismo , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mutagênese , Mutação , Transporte Proteico , Transdução de Sinais/genética , Coluna Vertebral/anormalidades , Coluna Vertebral/embriologia , Coluna Vertebral/metabolismo , Traqueia/anormalidades , Traqueia/embriologia , Traqueia/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Nat Genet ; 43(1): 79-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21131974

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.


Assuntos
Transtornos da Motilidade Ciliar/genética , Proteínas/genética , Animais , Cílios/genética , Dineínas/genética , Humanos , Síndrome de Kartagener/genética , Camundongos , Camundongos Endogâmicos , Mutação , Proteínas/fisiologia , Situs Inversus/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Proc Natl Acad Sci U S A ; 106(32): 13377-82, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666503

RESUMO

Mammalian Sonic hedgehog (Shh) signaling is essential for embryonic development and stem cell maintenance and has critical roles in tumorigenesis. Although core components of the Shh pathway are conserved in evolution, important aspects of mammalian Shh signaling are not shared with the Drosophila pathway. Perhaps the most dramatic difference between the Drosophila and mammalian pathways is that Shh signaling in the mouse requires a microtubule-based organelle, the primary cilium. Proteins that are required for the response to Shh are enriched in the cilium, but it is not clear why the cilium provides an appropriate venue for signal transduction. Here, we demonstrate that Kif7, a mammalian homologue of Drosophila Costal2 (Cos2), is a cilia-associated protein that regulates signaling from the membrane protein Smoothened (Smo) to Gli transcription factors. By using a Kif7 mutant allele identified in a reporter-based genetic screen, we show that, similar to Drosophila and zebrafish Cos2, mouse Kif7 acts downstream of Smo and upstream of Gli2 and has both negative and positive roles in Shh signal transduction. Mouse Kif7 activity depends on the presence of cilia and Kif7-eGFP localizes to base of the primary cilium in the absence of Shh. Activation of the Shh pathway promotes trafficking of Kif7-eGFP from the base to the tip of the cilium, and localization to the tip of the cilium is disrupted in a motor domain mutant. We conclude that Kif7 is a core regulator of Shh signaling that may also act as a ciliary motor.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Cinesinas/metabolismo , Transdução de Sinais , Animais , Linhagem da Célula , Flagelos/metabolismo , Cinesinas/genética , Camundongos , Mutação/genética , Tubo Neural/citologia , Tubo Neural/metabolismo , Fenótipo , Transporte Proteico
15.
Methods Cell Biol ; 94: 199-222, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20362092

RESUMO

The Hedgehog (Hh) signal transduction pathway is essential for the development and patterning of numerous organ systems, and has important roles in a variety of human cancers. Genetic screens for mouse embryonic patterning mutants first showed a connection between mammalian Hh signaling and intraflagellar transport (IFT), a process required for construction of the primary cilium, a small cellular projection found on most vertebrate cells. Additional genetic and cell biological studies have provided very strong evidence that mammalian Hh signaling depends on the primary cilium. Here, we review the evidence that defines the integral roles that IFT proteins and cilia play in the regulation of the Hh signal transduction pathway in vertebrates. We discuss the mechanisms that control localization of Hh pathway proteins to the cilium, focusing on the transmembrane protein Smoothened (Smo), which moves into the cilium in response to Hh ligand. The phenotypes caused by loss of cilia-associated proteins are complex, which suggests that cilia and IFT play active roles in mediating Hh signaling rather than serving simply as a compartment in which pathway components are concentrated. Hh signaling in Drosophila does not depend on cilia, but there appear to be ancient links between cilia and components of the Hh pathway that may reveal how this fundamental difference between the Drosophila and mammalian Hh pathways arose in evolution.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Animais , Padronização Corporal , Cílios/ultraestrutura , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Receptores Acoplados a Proteínas G/metabolismo
16.
Dev Dyn ; 237(8): 2030-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18488998

RESUMO

Genetic studies in the mouse have shown that Intraflagellar Transport (IFT) is essential for mammalian Hedgehog (Hh) signal transduction. In this study, we take advantage of wild type and IFT mutant mouse embryonic fibroblasts (MEFs) to characterize additional aspects of the relationship between IFT and Hh signaling. Exposure to Sonic hedgehog (Shh) ligand or expression of an activated allele of Smo, SmoA1, activates an Hh reporter in wild-type MEFs, but not in MEFs derived from embryos that lack IFT172 or the Dync2h1 subunit of the retrograde IFT motor. Similarly, decreased activity of either Sufu or PKA, two negative regulators of Hh signal transduction, activates the pathway in wild-type, but not IFT mutant, MEFs. In contrast to wild-type MEFs, Smo is constitutively present in the cilia of Dync2h1 mutant MEFs. This finding suggests that IFT-dependent trafficking of Hh pathway components through the cilium is essential for their function.


Assuntos
Cílios/metabolismo , Fibroblastos/ultraestrutura , Flagelos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Transporte Biológico/fisiologia , Cílios/ultraestrutura , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto , Feto/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luciferases/genética , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened
17.
Dev Cell ; 13(1): 87-102, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17609112

RESUMO

Here we identify the humpty dumpty (humdy) mouse mutant with failure to close the neural tube and optic fissure, causing exencephaly and retinal coloboma, common birth defects. The humdy mutation disrupts Phactr4, an uncharacterized protein phosphatase 1 (PP1) and actin regulator family member, and the missense mutation specifically disrupts binding to PP1. Phactr4 is initially expressed in the ventral cranial neural tube, a region of regulated proliferation, and after neural closure throughout the dorsoventral axis. humdy embryos display elevated proliferation and abnormally phosphorylated, inactive PP1, resulting in Rb hyperphosphorylation, derepression of E2F targets, and abnormal cell-cycle progression. Exencephaly, coloboma, and abnormal proliferation in humdy embryos are rescued by loss of E2f1, demonstrating the cell cycle is the key target controlled by Phactr4. Thus, Phactr4 is critical for the spatially and temporally regulated transition in proliferation through differential regulation of PP1 and the cell cycle during neurulation and eye development.


Assuntos
Coloboma/genética , Fator de Transcrição E2F1/metabolismo , Defeitos do Tubo Neural/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína do Retinoblastoma/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Coloboma/metabolismo , Coloboma/patologia , Proteínas do Citoesqueleto , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Fenótipo , Fosforilação , Proteína Fosfatase 1 , Retina/embriologia , Retina/fisiologia
18.
Dev Cell ; 12(5): 767-78, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17488627

RESUMO

Several studies have linked cilia and Hedgehog signaling, but the precise roles of ciliary proteins in signal transduction remain enigmatic. Here we describe a mouse mutation, hennin (hnn), that causes coupled defects in cilia structure and Sonic hedgehog (Shh) signaling. The hnn mutant cilia are short with a specific defect in the structure of the ciliary axoneme, and the hnn neural tube shows a Shh-independent expansion of the domain of motor neuron progenitors. The hnn mutation is a null allele of Arl13b, a small GTPase of the Arf/Arl family, and the Arl13b protein is localized to cilia. Double mutant analysis indicates that Gli3 repressor activity is normal in hnn embryos, but Gli activators are constitutively active at low levels. Thus, normal structure of the ciliary axoneme is required for the cell to translate different levels of Shh ligand into differential regulation of the Gli transcription factors that implement Hedgehog signals.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Alelos , Animais , Padronização Corporal , Cílios/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/ultraestrutura , Éxons/genética , Anormalidades do Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Íntrons/genética , Ligantes , Deformidades Congênitas dos Membros/embriologia , Camundongos , Mutação/genética , Defeitos do Tubo Neural/embriologia , Proteínas Oncogênicas/metabolismo , Receptores Patched , Fenótipo , Transporte Proteico , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Transativadores/metabolismo , Proteína GLI1 em Dedos de Zinco
19.
Dev Biol ; 306(1): 208-21, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17442300

RESUMO

Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects.


Assuntos
Sistema Nervoso Central/embriologia , Desenvolvimento Embrionário/genética , Mesoderma/enzimologia , Defeitos do Tubo Neural/genética , Crânio/embriologia , Ubiquitina-Proteína Ligases/fisiologia , Alelos , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Sistema Nervoso Central/enzimologia , Embrião de Mamíferos/enzimologia , Expressão Gênica , Camundongos , Camundongos Mutantes , Mutação , Defeitos do Tubo Neural/enzimologia , Estrutura Terciária de Proteína , Crânio/anormalidades , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/genética
20.
Curr Biol ; 17(1): 67-72, 2007 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-17208189

RESUMO

Phagocytic blood cells are critical to innate immune defense: They internalize and destroy microbial invaders and produce signals that trigger other immune responses. Despite this central role, the in vivo contributions of phagocytosis to systemic immune activation are not well understood. Drosophila has proven a fruitful model for the investigation of evolutionarily conserved innate immune mechanisms, including NF-kappaB-dependent transcriptional induction, RNAi in antiviral responses, and phagocytosis. The phagocytes of Drosophila encounter bacterial invaders early in infection and contribute to survival of infection. Phagocytosis in flies and mammals is highly homologous: Both rely on scavenger receptors, opsonins, and actin rearrangements for engulfment; have phagosomal cysteine proteases active at low pH; and can be subverted by similar intracellular pathogens. Although the role of Drosophila phagocytes in the activation of other immune tissues has not been clear, we show that induction of the antibacterial-peptide gene Defensin in the fat body during infection requires blood-cell contributions. We identify a gene, psidin, that encodes a lysosomal protein required in the blood cells for both degradation of engulfed bacteria and activation of fat-body Defensin. These data establish a role for the phagocytic blood cells of Drosophila in detection of infection and activation of the humoral immune response.


Assuntos
Proteínas Sanguíneas/fisiologia , Defensinas/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/imunologia , Corpo Adiposo/metabolismo , Fagocitose/fisiologia , Animais , Apresentação de Antígeno/fisiologia , Bacteriemia/imunologia , Bactérias/imunologia , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Hemócitos/fisiologia , Larva/imunologia , Larva/metabolismo , Lisossomos/metabolismo , Mutação , Fagócitos/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA