Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730614

RESUMO

Immune checkpoint inhibitor (CPI)-induced diabetes mellitus (CPI-DM) is a rare immune-related adverse event (irAE). Patients and providers fear that continuing CPIs puts patients at risk for additional irAEs and thus may discontinue therapy. Currently, there are little data to inform this decision. Therefore, this study aims to elucidate whether discontinuing CPIs after diagnosis of CPI-DM impacts the development of future irAEs and cancer outcomes such as progression and death. Patients who developed CPI-DM during cancer treatment at UCSF from 1 July 2015 to 5 July 2023 were analyzed for cancer outcomes and irAE development. Fisher's exact tests, Student t-tests, Kaplan-Meier methods, and Cox regression were used as appropriate. Of the 43 patients with CPI-DM, 20 (47%) resumed CPIs within 90 days of the irAE, 4 (9%) patients restarted after 90 days, and 19 (44%) patients never restarted. Subsequent irAEs were diagnosed in 9 of 24 (38%) who resumed CPIs and 3 of 19 (16%) who discontinued CPIs (p = 0.17). There was no significant difference in death (p = 0.74) or cancer progression (p = 0.55) between these two groups. While our single-institution study did not show worse cancer outcomes after discontinuing CPIs, many variables can impact outcomes, which our study was not adequately powered to evaluate. A nuanced approach is needed to decide whether to continue CPI treatment after a severe irAE like CPI-DM.

2.
Nat Methods ; 21(5): 846-856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658646

RESUMO

CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.


Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe II , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Animais , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/química , Camundongos , Humanos , Diabetes Mellitus Tipo 1/imunologia , Peptídeos/imunologia , Peptídeos/química , Apresentação de Antígeno/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Camundongos Endogâmicos NOD , Análise de Célula Única/métodos
3.
JCI Insight ; 8(23)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37934865

RESUMO

Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq) in profiling mouse autoantibodies. This library was validated using 7 genetically distinct mouse lines across a spectrum of autoreactivity. Mice deficient in antibody production (Rag2-/- and µMT) were used to model nonspecific peptide enrichments, while cross-reactivity was evaluated using anti-ovalbumin B cell receptor-restricted OB1 mice as a proof of principle. The PhIP-seq approach was then utilized to interrogate 3 distinct autoimmune disease models. First, serum from Lyn-/- IgD+/- mice with lupus-like disease was used to identify nuclear and apoptotic bleb reactivities. Second, serum from nonobese diabetic (NOD) mice, a polygenic model of pancreas-specific autoimmunity, was enriched in peptides derived from both insulin and predicted pancreatic proteins. Lastly, Aire-/- mouse sera were used to identify numerous autoantigens, many of which were also observed in previous studies of humans with autoimmune polyendocrinopathy syndrome type 1 carrying recessive mutations in AIRE. These experiments support the use of murine proteome-wide PhIP-seq for antigenic profiling and autoantibody discovery, which may be employed to study a range of immune perturbations in mouse models of autoimmunity profiling.


Assuntos
Autoanticorpos , Bacteriófagos , Humanos , Animais , Camundongos , Proteoma , Autoimunidade , Peptídeos , Camundongos Endogâmicos NOD
4.
Nat Commun ; 14(1): 6268, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805522

RESUMO

Psoriasis is a chronic, systemic inflammatory condition primarily affecting skin. While the role of the immune compartment (e.g., T cells) is well established, the changes in the skin compartment are more poorly understood. Using longitudinal skin biopsies (n = 375) from the "Psoriasis Treatment with Abatacept and Ustekinumab: A Study of Efficacy"(PAUSE) clinical trial (n = 101), we report 953 expression quantitative trait loci (eQTLs). Of those, 116 eQTLs have effect sizes that were modulated by local skin inflammation (eQTL interactions). By examining these eQTL genes (eGenes), we find that most are expressed in the skin tissue compartment, and a subset overlap with the NRF2 pathway. Indeed, the strongest eQTL interaction signal - rs1491377616-LCE3C - links a psoriasis risk locus with a gene specifically expressed in the epidermis. This eQTL study highlights the potential to use biospecimens from clinical trials to discover in vivo eQTL interactions with therapeutically relevant environmental variables.


Assuntos
Psoríase , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Pele/patologia , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/patologia , Terapia de Imunossupressão , Biópsia , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
5.
Sci Immunol ; 8(88): eabq3109, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889983

RESUMO

Mutations in the gene encoding the zinc-finger transcription factor Ikaros (IKZF1) are found in patients with immunodeficiency, leukemia, and autoimmunity. Although Ikaros has a well-established function in modulating gene expression programs important for hematopoietic development, its role in other cell types is less well defined. Here, we uncover functions for Ikaros in thymic epithelial lineage development in mice and show that Ikzf1 expression in medullary thymic epithelial cells (mTECs) is required for both autoimmune regulator-positive (Aire+) mTEC development and tissue-specific antigen (TSA) gene expression. Accordingly, TEC-specific deletion of Ikzf1 in mice results in a profound decrease in Aire+ mTECs, a global loss of TSA gene expression, and the development of autoimmunity. Moreover, Ikaros shapes thymic mimetic cell diversity, and its deletion results in a marked expansion of thymic tuft cells and muscle-like mTECs and a loss of other Aire-dependent mimetic populations. Single-cell analysis reveals that Ikaros modulates core transcriptional programs in TECs that correlate with the observed cellular changes. Our findings highlight a previously undescribed role for Ikaros in regulating epithelial lineage development and function and suggest that failed thymic central tolerance could contribute to the autoimmunity seen in humans with IKZF1 mutations.


Assuntos
Tolerância Central , Timo , Humanos , Camundongos , Animais , Diferenciação Celular , Fatores de Transcrição , Regulação da Expressão Gênica
6.
Sci Data ; 10(1): 323, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237059

RESUMO

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Doadores de Tecidos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Genômica , Pâncreas
7.
Diabetes ; 72(1): 59-70, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35709010

RESUMO

Acquired lipodystrophy is often characterized as an idiopathic subtype of lipodystrophy. Despite suspicion of an immune-mediated pathology, biomarkers such as autoantibodies are generally lacking. Here, we used an unbiased proteome-wide screening approach to identify autoantibodies to the adipocyte-specific lipid droplet protein perilipin 1 (PLIN1) in a murine model of autoimmune polyendocrine syndrome type 1 (APS1). We then tested for PLIN1 autoantibodies in human subjects with acquired lipodystrophy with two independent severe breaks in immune tolerance (including APS1) along with control subjects using a specific radioligand binding assay and indirect immunofluorescence on fat tissue. We identified autoantibodies to PLIN1 in these two cases, including the first reported case of APS1 with acquired lipodystrophy and a second patient who acquired lipodystrophy as an immune-related adverse event following cancer immunotherapy. Lastly, we also found PLIN1 autoantibodies to be specifically enriched in a subset of patients with acquired generalized lipodystrophy (17 of 46 [37%]), particularly those with panniculitis and other features of autoimmunity. These data lend additional support to new literature that suggests that PLIN1 autoantibodies represent a marker of acquired autoimmune lipodystrophies and further link them to a break in immune tolerance.


Assuntos
Lipodistrofia Generalizada Congênita , Lipodistrofia , Humanos , Animais , Camundongos , Perilipina-1/metabolismo , Autoanticorpos , Lipodistrofia Generalizada Congênita/metabolismo , Lipodistrofia Generalizada Congênita/patologia , Lipodistrofia/metabolismo , Tecido Adiposo/metabolismo
8.
Front Immunol ; 14: 1277365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38420512

RESUMO

Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.e., post-Aire, Krt10+ mTECs, and Dclk1+ Tuft mTECs) and the heterogeneity in their gene expression profiles (i.e., mosaic expression patterns), it has been challenging to identify the additional factors complementing the transcriptional regulation. We aimed to identify the transcriptional regulators involved in the regulation of mTEC development and self-peptide expression in an unbiased and genome-wide manner. We used ATAC footprinting analysis as an indirect approach to identify transcription factors involved in the gene expression regulation in mTECs, which we validated by ChIP sequencing. This study identifies Fezf2 as a regulator of the recently described thymic Tuft cells (i.e., Tuft mTECs). Furthermore, we identify that transcriptional regulators of the ELF, ESE, ERF, and PEA3 subfamily of the ETS transcription factor family and members of the Krüppel-like family of transcription factors play a role in the transcriptional regulation of genes involved in late mTEC development and promiscuous gene expression.


Assuntos
Fatores de Transcrição , Células em Tufo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células Epiteliais/metabolismo , Peptídeos/metabolismo
9.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925682

RESUMO

Checkpoint inhibitors (CPIs) targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) have revolutionized cancer treatment but can trigger autoimmune complications, including CPI-induced diabetes mellitus (CPI-DM), which occurs preferentially with PD-1 blockade. We found evidence of pancreatic inflammation in patients with CPI-DM with shrinkage of pancreases, increased pancreatic enzymes, and in a case from a patient who died with CPI-DM, peri-islet lymphocytic infiltration. In the NOD mouse model, anti-PD-L1 but not anti-CTLA-4 induced diabetes rapidly. RNA sequencing revealed that cytolytic IFN-γ+CD8+ T cells infiltrated islets with anti-PD-L1. Changes in ß cells were predominantly driven by IFN-γ and TNF-α and included induction of a potentially novel ß cell population with transcriptional changes suggesting dedifferentiation. IFN-γ increased checkpoint ligand expression and activated apoptosis pathways in human ß cells in vitro. Treatment with anti-IFN-γ and anti-TNF-α prevented CPI-DM in anti-PD-L1-treated NOD mice. CPIs targeting the PD-1/PD-L1 pathway resulted in transcriptional changes in ß cells and immune infiltrates that may lead to the development of diabetes. Inhibition of inflammatory cytokines can prevent CPI-DM, suggesting a strategy for clinical application to prevent this complication.


Assuntos
Diabetes Mellitus , Receptor de Morte Celular Programada 1 , Animais , Humanos , Mediadores da Inflamação , Camundongos , Camundongos Endogâmicos NOD , Inibidores do Fator de Necrose Tumoral
10.
Nature ; 603(7900): 321-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073561

RESUMO

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Animais , Linfócitos B , Moléculas de Adesão Celular Neurônio-Glia , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Camundongos , Proteínas do Tecido Nervoso
11.
Sci Immunol ; 6(65): eabl5053, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767455

RESUMO

The autoimmune regulator (Aire), a well-defined transcriptional regulator in the thymus, is also found in extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. eTACs are hematopoietic antigen-presenting cells and inducers of immune tolerance, but their precise identity has remained unclear. Here, we use single-cell multiomics, transgenic murine models, and functional approaches to define eTACs at the transcriptional, genomic, and proteomic level. We find that eTACs consist of two similar cell types: CCR7+ Aire-expressing migratory dendritic cells (AmDCs) and an Airehi population coexpressing Aire and retinoic acid receptor­related orphan receptor γt (RORγt) that we term Janus cells (JCs). Both JCs and AmDCs have the highest transcriptional and genomic homology to CCR7+ migratory dendritic cells. eTACs, particularly JCs, have highly accessible chromatin and broad gene expression, including a range of tissue-specific antigens, as well as remarkable homology to medullary thymic epithelium and RANK-dependent Aire expression. Transgenic self-antigen expression by eTACs is sufficient to induce negative selection and prevent autoimmune diabetes. This transcriptional, genomic, and functional symmetry between eTACs (both JCs and AmDCs) and medullary thymic epithelium­the other principal Aire-expressing population and a key regulator of central tolerance­identifies a core program that may influence self-representation and tolerance across the spectrum of immune development.


Assuntos
Epitélio/imunologia , Análise de Célula Única , Timo/imunologia , Fatores de Transcrição/imunologia , Animais , Tolerância Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Timo/citologia , Proteína AIRE
12.
Sci Immunol ; 6(61)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272228

RESUMO

Healthy pregnancy requires tolerance to fetal alloantigens as well as syngeneic embryonic and placental antigens. Given the importance of the autoimmune regulator (Aire) gene in self-tolerance, we investigated the role of Aire-expressing cells in maternal-fetal tolerance. We report that maternal ablation of Aire-expressing (Aire +) cells during early mouse pregnancy caused intrauterine growth restriction (IUGR) in both allogeneic and syngeneic pregnancies. This phenotype is immune mediated, as IUGR was rescued in Rag1-deficient mice, and involved a memory response, demonstrated by recurrence of severe IUGR in second pregnancies. Single-cell RNA sequencing demonstrated that Aire + cell depletion in pregnancy results in expansion of activated T cells, particularly T follicular helper cells. Unexpectedly, selective ablation of either Aire-expressing medullary thymic epithelial cells or extrathymic Aire-expressing cells (eTACs) mapped the IUGR phenotype exclusively to eTACs. Thus, we report a previously undescribed mechanism for the maintenance of maternal-fetal immune homeostasis and demonstrate that eTACs protect the conceptus from immune-mediated IUGR.


Assuntos
Células Epiteliais/imunologia , Tolerância Imunológica , Fatores de Transcrição/imunologia , Animais , Feminino , Retardo do Crescimento Fetal/imunologia , Feto/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placenta/imunologia , Gravidez , Timo/imunologia , Fatores de Transcrição/genética , Proteína AIRE
13.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34115115

RESUMO

Naturally occurring cases of monogenic type 1 diabetes (T1D) help establish direct mechanisms driving this complex autoimmune disease. A recently identified de novo germline gain-of-function (GOF) mutation in the transcriptional regulator STAT3 was found to cause neonatal T1D. We engineered a novel knock-in mouse incorporating this highly diabetogenic human STAT3 mutation (K392R) and found that these mice recapitulated the human autoimmune diabetes phenotype. Paired single-cell TCR and RNA sequencing revealed that STAT3-GOF drives proliferation and clonal expansion of effector CD8+ cells that resist terminal exhaustion. Single-cell ATAC-seq showed that these effector T cells are epigenetically distinct and have differential chromatin architecture induced by STAT3-GOF. Analysis of islet TCR clonotypes revealed a CD8+ cell reacting against known antigen IGRP, and STAT3-GOF in an IGRP-reactive TCR transgenic model demonstrated that STAT3-GOF intrinsic to CD8+ cells is sufficient to accelerate diabetes onset. Altogether, these findings reveal a diabetogenic CD8+ T cell response that is restrained in the presence of normal STAT3 activity and drives diabetes pathogenesis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Tolerância Imunológica/genética , Mutação/genética , Fator de Transcrição STAT3/genética , Animais , Autoimunidade , Proliferação de Células , Quimiotaxia/genética , Apresentação Cruzada/imunologia , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Epigênese Genética , Mutação com Ganho de Função , Heterozigoto , Humanos , Camundongos , Fenótipo , Regulação para Cima
14.
Orthopedics ; 44(3): e446-e453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34039212

RESUMO

Treatment of isolated complete tear of the scapholunate ligament is challenging. The purpose of this study was to determine (1) whether delayed repair of only scapholunate ligament is an option without other reconstruction procedures and (2) whether functional outcomes are possible despite radiographic presence of arthritis. This study included patients who had complete ligament tear at exploration and underwent only scapholunate ligament repair without capsulodesis or tenodesis. Fifteen patients returned for clinical and radiographic examinations. Preoperatively, mean scapholunate gap was 2.9 mm and 4.58 mm on posteroanterior and tangential posteroanterior views, respectively. Postoperatively, the final mean gap was 2.5 mm and 3.9 mm on the posteroanterior and tangential posteroanterior views, respectively. The mean preoperative and final scapholunate angles were 74° and 72.6°, respectively. Seven patients had radiographic arthritis at final follow-up. Delayed scapholunate repair is possible after complete ligament tear. At long-term follow-up, clinical functional outcomes may not correlate with radiographic presence of degenerative arthritis. [Orthopedics. 2021;44(3):e446-e453.].


Assuntos
Ligamentos Articulares/lesões , Ligamentos Articulares/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Ruptura/cirurgia , Adulto , Humanos , Osso Semilunar/cirurgia , Masculino , Pessoa de Meia-Idade , Osso Escafoide/cirurgia , Fatores de Tempo , Resultado do Tratamento
15.
Nat Commun ; 12(1): 1096, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597545

RESUMO

The thymus' key function in the immune system is to provide the necessary environment for the development of diverse and self-tolerant T lymphocytes. While recent evidence suggests that the thymic stroma is comprised of more functionally distinct subpopulations than previously appreciated, the extent of this cellular heterogeneity in the human thymus is not well understood. Here we use single-cell RNA sequencing to comprehensively profile the human thymic stroma across multiple stages of life. Mesenchyme, pericytes and endothelial cells are identified as potential key regulators of thymic epithelial cell differentiation and thymocyte migration. In-depth analyses of epithelial cells reveal the presence of ionocytes as a medullary population, while the expression of tissue-specific antigens is mapped to different subsets of epithelial cells. This work thus provides important insight on how the diversity of thymic cells is established, and how this heterogeneity contributes to the induction of immune tolerance in humans.


Assuntos
Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Análise de Célula Única/métodos , Timo/metabolismo , Adulto , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Pericitos/citologia , Pericitos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/embriologia
16.
Annu Rev Med ; 72: 313-330, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32886542

RESUMO

Immune checkpoint inhibitors (CPIs) reverse immune suppression that is thought to allow malignant growth. Despite remarkable efficacy in a subset of cancers, their use is accompanied by immune-related adverse events, including endocrinopathies such as hypophysitis, thyroid dysfunction, diabetes, and adrenalitis. These conditions are heterogenous, with differing incidence across CPI types, but are unified by the acuity and extremity of tissue-specific organ failure. Their occurrence may be associated with beneficial tumor control. Further understanding of the risk factors and mechanisms of these endocrine immunotoxicities can help optimize CPI use as well as improve understanding of spontaneous autoimmune diseases.


Assuntos
Doenças Autoimunes/induzido quimicamente , Autoimunidade/efeitos dos fármacos , Doenças do Sistema Endócrino/induzido quimicamente , Inibidores de Checkpoint Imunológico/efeitos adversos , Doenças Autoimunes/imunologia , Doenças do Sistema Endócrino/imunologia , Humanos
17.
Elife ; 92020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33226342

RESUMO

Medullary thymic epithelial cells (mTECs) play a critical role in central immune tolerance by mediating negative selection of autoreactive T cells through the collective expression of the peripheral self-antigen compartment, including tissue-specific antigens (TSAs). Recent work has shown that gene-expression patterns within the mTEC compartment are heterogenous and include multiple differentiated cell states. To further define mTEC development and medullary epithelial lineage relationships, we combined lineage tracing and recovery from transient in vivo mTEC ablation with single-cell RNA-sequencing in Mus musculus. The combination of bioinformatic and experimental approaches revealed a non-stem transit-amplifying population of cycling mTECs that preceded Aire expression. We propose a branching model of mTEC development wherein a heterogeneous pool of transit-amplifying cells gives rise to Aire- and Ccl21a-expressing mTEC subsets. We further use experimental techniques to show that within the Aire-expressing developmental branch, TSA expression peaked as Aire expression decreased, implying Aire expression must be established before TSA expression can occur. Collectively, these data provide a roadmap of mTEC development and demonstrate the power of combinatorial approaches leveraging both in vivo models and high-dimensional datasets.


Specialized cells in the immune system known as T cells protect the body from infection by destroying disease-causing microbes, such as bacteria or viruses. T cells use proteins on their surface called receptors to stick to infectious microbes and remove them from the body. Some newly developed T-cells, however, contain receptors that recognize and bind to cells that belong in the body. If these faulty T cells are released, they can attack healthy tissues and cause an autoimmune disease. After a new T cell is developed, it gets carried to a gland in the chest known as the thymus. Cells in the thymus called mTECs screen T cells for receptors that may bind to the body's tissues. mTECs do this by presenting T cells with proteins that are commonly found on the surface of healthy cells in the body. If a T cell recognizes any of these 'tissue specific proteins', it is destroyed or given a new role in the body. Some faulty T cells, however, still manage to evade detection. One way to uncover why this might happen is to investigate how mTECs develop. Previous work showed that mTECs transition through various stages before reaching their final form. However, the order in which these events occur remained unclear. To gain a better understanding of these developmental steps, Wells, Miller et al. extracted mTECs from the thymus of mice and analyzed the genetic make-up of individual cells. This uncovered a missing link in mTEC development: a new type of cell that is the immediate predecessor of the final mTEC. These 'predecessor' cells were actively growing, highlighting that mTECs can be constantly generated in the body. By probing the genes that generate tissue-specific proteins in mTECs, Wells, Miller et al. revealed that these proteins were only produced for short periods and in the late stages of mTEC development. These findings contribute to our understanding of how mTECs develop to screen T cells. Mapping these developmental stages will make it easier to identify when faulty T cells are able to evade mTECs. This will lead to earlier detection of autoimmune diseases which could result in better treatments.


Assuntos
Células Epiteliais/citologia , Timo/citologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência de RNA , Análise de Célula Única
18.
Brain Commun ; 2(2): fcaa059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954318

RESUMO

Paraneoplastic neurological disorders are immune-mediated diseases understood to manifest as part of a misdirected anti-tumor immune response. Paraneoplastic neurological disorder-associated autoantibodies can assist with diagnosis and enhance our understanding of tumor-associated immune processes. We designed a comprehensive library of 49-amino-acid overlapping peptides spanning the entire human proteome, including all splicing isoforms and computationally predicted coding regions. Using this library, we optimized a phage immunoprecipitation and sequencing protocol with multiple rounds of enrichment to create high-resolution epitope profiles in serum and cerebrospinal fluid (CSF) samples from patients suffering from two common paraneoplastic neurological disorders, the anti-Yo (n = 36 patients) and anti-Hu (n = 44 patients) syndromes. All (100%) anti-Yo patient samples yielded enrichment of peptides from the canonical anti-Yo (CDR2 and CDR2L) antigens, while 38% of anti-Hu patients enriched peptides deriving from the nELAVL (neuronal embryonic lethal abnormal vision like) family of proteins, the anti-Hu autoantigenic target. Among the anti-Hu patient samples that were positive for nELAVL, we noted a restricted region of immunoreactivity. To achieve single amino acid resolution, we designed a novel deep mutational scanning phage library encoding all possible single-point mutants targeting the reactive nELAVL region. This analysis revealed a distinct preference for the degenerate motif, RLDxLL, shared by ELAVL2, 3 and 4. Lastly, phage immunoprecipitation sequencing identified several known autoantigens in these same patient samples, including peptides deriving from the cancer-associated antigens ZIC and SOX families of transcription factors. Overall, this optimized phage immunoprecipitation sequencing library and protocol yielded the high-resolution epitope mapping of the autoantigens targeted in anti-Yo and anti-Hu encephalitis patients to date. The results presented here further demonstrate the utility and high-resolution capability of phage immunoprecipitation sequencing for both basic science and clinical applications and for better understanding the antigenic targets and triggers of paraneoplastic neurological disorders.

19.
Int J Surg Case Rep ; 72: 590-595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32698295

RESUMO

INTRODUCTION: Dedifferentiated chondrosarcomas are rare and highly malignant tumors that require wide surgical resection. Survival is extremely poor without adequate surgical margins. We present a case of articular sparing surgery of the shoulder for dedifferentiated chondrosarcoma with excellent functional outcomes and no evidence of disease after fifty-six months. PRESENTATION OF CASE: A 29-year-old male was found to have a non-metastatic right proximal humerus dedifferentiated chondrosarcoma. He underwent resection with clear one centimeter margins sparing the medial cortex and the articular surface. Reconstruction of the bone was accomplished using a hemicortical allograft. A dermal allograft was used to help reconstruct the rotator cuff to the allograft bone. At fifty-six months after surgery he has excellent functional range of motion. His current MSTS, Quick Dash, and Constant Shoulder scores are 29, 2.3, and 80, respectively. He has remained free of disease, is back to work without restrictions and is active in outdoor activities. DISCUSSION: Dedifferentiated chondrosarcoma has high recurrence and poor survival rates. Adequate surgical resection is vital for its treatment. Previously described reconstructive techniques have consisted of articular replacement with a prosthesis, allograft, or allograft-prosthetic composites. To our knowledge, this is the first report of an articular sparing reconstruction for dedifferentiated chondrosarcoma with fifty-six month survival and functional outcomes. When possible, sparing the articular surface can provide good functional outcomes that improve over time. CONCLUSION: If adequate surgical margins can be obtained, an articular surface sparing reconstruction of the shoulder can provide effective functional outcomes and an alternative to joint replacement.

20.
J Immunol ; 204(11): 2877-2886, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269095

RESUMO

Central tolerance prevents autoimmunity, but also limits T cell responses to potentially immunodominant tumor epitopes with limited expression in healthy tissues. In peripheral APCs, γ-IFN-inducible lysosomal thiol reductase (GILT) is critical for MHC class II-restricted presentation of disulfide bond-containing proteins, including the self-antigen and melanoma Ag tyrosinase-related protein 1 (TRP1). The role of GILT in thymic Ag processing and generation of central tolerance has not been investigated. We found that GILT enhanced the negative selection of TRP1-specific thymocytes in mice. GILT expression was enriched in thymic APCs capable of mediating deletion, namely medullary thymic epithelial cells (mTECs) and dendritic cells, whereas TRP1 expression was restricted solely to mTECs. GILT facilitated MHC class II-restricted presentation of endogenous TRP1 by pooled thymic APCs. Using bone marrow chimeras, GILT expression in thymic epithelial cells (TECs), but not hematopoietic cells, was sufficient for complete deletion of TRP1-specific thymocytes. An increased frequency of TRP1-specific regulatory T (Treg) cells was present in chimeras with increased deletion of TRP1-specific thymocytes. Only chimeras that lacked GILT in both TECs and hematopoietic cells had a high conventional T/Treg cell ratio and were protected from melanoma challenge. Thus, GILT expression in thymic APCs, and mTECs in particular, preferentially facilitates MHC class II-restricted presentation, negative selection, and increased Treg cells, resulting in a diminished antitumor response to a tissue-restricted, melanoma-associated self-antigen.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Epiteliais/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/imunologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxirredutases/metabolismo , Linfócitos T Reguladores/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Autoantígenos/metabolismo , Células Cultivadas , Tolerância Central , Seleção Clonal Mediada por Antígeno , Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA