Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Breast Cancer Res ; 25(1): 118, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803429

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) are reactive metabolites intrinsically linked with modern dietary patterns. Processed foods, and those high in sugar, protein and fat, often contain high levels of AGEs. Increased AGE levels are associated with increased breast cancer risk, however their significance has been largely overlooked due to a lack of direct cause-and-effect relationship. METHODS: To address this knowledge gap, FVB/n mice were fed regular, low AGE, and high AGE diets from 3 weeks of age and mammary glands harvested during puberty (7 weeks) or adulthood (12 weeks and 7 months) to determine the effects upon mammary gland development. At endpoint mammary glands were harvested and assessed histologically (n ≥ 4). Immunohistochemistry and immunofluorescence were used to assess cellular proliferation and stromal fibroblast and macrophage recruitment. The Kruskal-Wallis test were used to compare continuous outcomes among groups. Mammary epithelial cell migration and invasion in response to AGE-mediated fibroblast activation was determined in two-compartment co-culture models. In vitro experiments were performed in triplicate. The nonparametric Wilcoxon rank sum test was used to compare differences between groups. RESULTS: Histological analysis revealed the high AGE diet delayed ductal elongation, increased primary branching, as well as increased terminal end bud number and size. The high AGE diet also led to increased recruitment and proliferation of stromal cells to abnormal structures that persisted into adulthood. Atypical hyperplasia was observed in the high AGE fed mice. Ex vivo fibroblasts from mice fed dietary-AGEs retain an activated phenotype and promoted epithelial migration and invasion of non-transformed immortalized and tumor-derived mammary epithelial cells. Mechanistically, we found that the receptor for AGE (RAGE) is required for AGE-mediated increases in epithelial cell migration and invasion. CONCLUSIONS: We observed a disruption in mammary gland development when mice were fed a diet high in AGEs. Further, both epithelial and stromal cell populations were impacted by the high AGE diet in the mammary gland. Educational, interventional, and pharmacological strategies to reduce AGEs associated with diet may be viewed as novel disease preventive and/or therapeutic initiatives during puberty.


Assuntos
Produtos Finais da Glicação Avançada em Alimentos , Maturidade Sexual , Camundongos , Animais , Hiperplasia/metabolismo , Hiperplasia/patologia , Maturidade Sexual/fisiologia , Proliferação de Células , Morfogênese , Glândulas Mamárias Animais
2.
Cancer Genet ; 278-279: 38-49, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586297

RESUMO

Myeloid neoplasms represent a broad spectrum of hematological disorders for which somatic mutation status in key driver genes is important for diagnosis, prognosis and treatment. Here we summarize the findings of a targeted, next generation sequencing laboratory developed test in 24,639 clinical myeloid samples. Data were analyzed comprehensively and as part of individual cohorts specific to acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and myeloproliferative neoplasms (MPN). Overall, 48,015 variants were detected, and variants were found in all 50 genes in the panel. The mean number of mutations per patient was 1.95. Mutation number increased with age (Spearman's rank correlation coefficient, ρ = 0.29, P < 0.0001) and was higher in patients with AML than MDS or MPN (Student's t-test, P < 0.0001). TET2 was the most common mutation detected (19.1% of samples; 4,695/24,639) including 7.7% (1,908/24,639) with multi-hit TET2 mutations. Mutation frequency was correlated between patients with cytopenias and MDS (Spearman's, ρ = 0.97, P < 2.2×10-16) with the MDS diagnostic gene SF3B1 being the only notable outlier. This large retrospective study shows the utility of NGS testing to inform clinical decisions during routine clinical care and highlights the mutational landscape of a broad population of myeloid patients.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Estudos Retrospectivos , Mutação/genética , Transtornos Mieloproliferativos/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/patologia
3.
Breast Cancer Res ; 24(1): 42, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725493

RESUMO

BACKGROUND: Obesity and adult weight gain are linked to increased breast cancer risk and poorer clinical outcomes in postmenopausal women, particularly for hormone-dependent tumors. Menopause is a time when significant weight gain occurs in many women, and clinical and preclinical studies have identified menopause (or ovariectomy) as a period of vulnerability for breast cancer development and promotion. METHODS: We hypothesized that preventing weight gain after ovariectomy (OVX) may be sufficient to prevent the formation of new tumors and decrease growth of existing mammary tumors. We tested this hypothesis in a rat model of obesity and carcinogen-induced postmenopausal mammary cancer and validated our findings in a murine xenograft model with implanted human tumors. RESULTS: In both models, preventing weight gain after OVX significantly decreased obesity-associated tumor development and growth. Importantly, we did not induce weight loss in these animals, but simply prevented weight gain. In both lean and obese rats, preventing weight gain reduced visceral fat accumulation and associated insulin resistance. Similarly, the intervention decreased circulating tumor-promoting growth factors and inflammatory cytokines (i.e., BDNF, TNFα, FGF-2), with greater effects in obese compared to lean rats. In obese rats, preventing weight gain decreased adipocyte size, adipose tissue macrophage infiltration, reduced expression of the tumor-promoting growth factor FGF-1 in mammary adipose, and reduced phosphorylated FGFR indicating reduced FGF signaling in tumors. CONCLUSIONS: Together, these findings suggest that the underlying mechanisms associated with the anti-tumor effects of weight maintenance are multi-factorial, and that weight maintenance during the peri-/postmenopausal period may be a viable strategy for reducing obesity-associated breast cancer risk and progression in women.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/prevenção & controle , Feminino , Humanos , Camundongos , Obesidade/complicações , Obesidade/metabolismo , Ovariectomia , Pós-Menopausa , Ratos , Roedores , Carga Tumoral , Aumento de Peso
4.
J Mammary Gland Biol Neoplasia ; 26(4): 399-417, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914014

RESUMO

Abnormal lipid metabolism is common in breast cancer with the three main subtypes, hormone receptor (HR) positive, human epidermal growth factor 2 (HER2) positive, and triple negative, showing common and distinct lipid dependencies. A growing body of studies identify altered lipid metabolism as impacting breast cancer cell growth and survival, plasticity, drug resistance, and metastasis. Lipids are a class of nonpolar or polar (amphipathic) biomolecules that can be produced in cells via de novo synthesis or acquired from the microenvironment. The three main functions of cellular lipids are as essential components of membranes, signaling molecules, and nutrient storage. The use of mass spectrometry-based lipidomics to analyze the global cellular lipidome has become more prevalent in breast cancer research. In this review, we discuss current lipidomic methodologies, highlight recent breast cancer lipidomic studies and how these findings connect to disease progression and therapeutic development, and the potential use of lipidomics as a diagnostic tool in breast cancer. A better understanding of the breast cancer lipidome and how it changes during drug resistance and tumor progression will allow informed development of diagnostics and novel targeted therapies.


Assuntos
Neoplasias da Mama , Lipidômica , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Microambiente Tumoral
5.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046001

RESUMO

Obesity increases breast cancer mortality by promoting resistance to therapy. Here, we identified regulatory pathways in estrogen receptor-positive (ER-positive) tumors that were shared between patients with obesity and those with resistance to neoadjuvant aromatase inhibition. Among these was fibroblast growth factor receptor 1 (FGFR1), a known mediator of endocrine therapy resistance. In a preclinical model with patient-derived ER-positive tumors, diet-induced obesity promoted a similar gene expression signature and sustained the growth of FGFR1-overexpressing tumors after estrogen deprivation. Tumor FGFR1 phosphorylation was elevated with obesity and predicted a shorter disease-free and disease-specific survival for patients treated with tamoxifen. In both human and mouse mammary adipose tissue, FGF1 ligand expression was associated with metabolic dysfunction, weight gain, and adipocyte hypertrophy, implicating the impaired response to a positive energy balance in growth factor production within the tumor niche. In conjunction with these studies, we describe a potentially novel graft-competent model that can be used with patient-derived tissue to elucidate factors specific to extrinsic (host) and intrinsic (tumor) tissue that are critical for obesity-associated tumor promotion. Taken together, we demonstrate that obesity and excess energy establish a tumor environment with features of endocrine therapy resistance and identify a role for ligand-dependent FGFR1 signaling in obesity-associated breast cancer progression.


Assuntos
Estrogênios/metabolismo , Obesidade/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Estrogênio/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Dieta , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mutação com Perda de Função , Camundongos , Obesidade/complicações , Obesidade/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Tamoxifeno/uso terapêutico , Microambiente Tumoral , Aumento de Peso
6.
Breast Cancer Res ; 20(1): 50, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898754

RESUMO

BACKGROUND: Obesity and type II diabetes are linked to increased breast cancer risk in postmenopausal women. Patients treated with the antidiabetic drug metformin for diabetes or metabolic syndrome have reduced breast cancer risk, a greater pathologic complete response to neoadjuvant therapy, and improved breast cancer survival. We hypothesized that metformin may be especially effective when targeted to the menopausal transition, as this is a lifecycle window when weight gain and metabolic syndrome increase, and is also when the risk for obesity-related breast cancer increases. METHODS: Here, we used an 1-methyl-1-nitrosourea (MNU)-induced mammary tumor rat model of estrogen receptor (ER)-positive postmenopausal breast cancer to evaluate the long-term effects of metformin administration on metabolic and tumor endpoints. In this model, ovariectomy (OVX) induces rapid weight gain, and an impaired whole-body response to excess calories contributes to increased tumor glucose uptake and increased tumor proliferation. Metformin treatment was initiated in tumor-bearing animals immediately prior to OVX and maintained for the duration of the study. RESULTS: Metformin decreased the size of existing mammary tumors and inhibited new tumor formation without changing body weight or adiposity. Decreased lipid accumulation in the livers of metformin-treated animals supports the ability of metformin to improve overall metabolic health. We also found a decrease in the number of aromatase-positive, CD68-positive macrophages within the tumor microenvironment, suggesting that metformin targets the immune microenvironment in addition to improving whole-body metabolism. CONCLUSIONS: These findings suggest that peri-menopause/menopause represents a unique window of time during which metformin may be highly effective in women with established, or at high risk for developing, breast cancer.


Assuntos
Aromatase/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias Mamárias Animais/tratamento farmacológico , Metformina/administração & dosagem , Animais , Mama/efeitos dos fármacos , Mama/imunologia , Mama/patologia , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/induzido quimicamente , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Metilnitrosoureia/toxicidade , Ovariectomia , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/genética , Pós-Menopausa/imunologia , Ratos , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
J Immunother Cancer ; 6(1): 32, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743104

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have changed the clinical management of melanoma. However, not all patients respond, and current biomarkers including PD-L1 and mutational burden show incomplete predictive performance. The clinical validity and utility of complex biomarkers have not been studied in melanoma. METHODS: Cutaneous metastatic melanoma patients at eight institutions were evaluated for PD-L1 expression, CD8+ T-cell infiltration pattern, mutational burden, and 394 immune transcript expression. PD-L1 IHC and mutational burden were assessed for association with overall survival (OS) in 94 patients treated prior to ICI approval by the FDA (historical-controls), and in 137 patients treated with ICIs. Unsupervised analysis revealed distinct immune-clusters with separate response rates. This comprehensive immune profiling data were then integrated to generate a continuous Response Score (RS) based upon response criteria (RECIST v.1.1). RS was developed using a single institution training cohort (n = 48) and subsequently tested in a separate eight institution validation cohort (n = 29) to mimic a real-world clinical scenario. RESULTS: PD-L1 positivity ≥1% correlated with response and OS in ICI-treated patients, but demonstrated limited predictive performance. High mutational burden was associated with response in ICI-treated patients, but not with OS. Comprehensive immune profiling using RS demonstrated higher sensitivity (72.2%) compared to PD-L1 IHC (34.25%) and tumor mutational burden (32.5%), but with similar specificity. CONCLUSIONS: In this study, the response score derived from comprehensive immune profiling in a limited melanoma cohort showed improved predictive performance as compared to PD-L1 IHC and tumor mutational burden.


Assuntos
Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Glucose-6-Fosfato Isomerase , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/patologia
8.
Horm Cancer ; 8(5-6): 269-285, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28741260

RESUMO

The androgen receptor (AR) has context-dependent roles in breast cancer growth and progression. Overall, high tumor AR levels predict a favorable patient outcome, but several studies have established a tumor promotional role for AR, particularly in supporting the growth of estrogen receptor positive (ER-positive) breast cancers after endocrine therapy. Our previous studies have demonstrated that obesity promotes mammary tumor progression after ovariectomy (OVX) in a rat model of postmenopausal breast cancer. Here, we investigated a potential role for AR in obesity-associated post-OVX mammary tumor progression following ovarian estrogen loss. In this model, we found that obese but not lean rats had nuclear localized AR in tumors that progressed 3 weeks after OVX, compared to those that regressed. AR nuclear localization is consistent with activation of AR-dependent transcription. Longer-term studies (8 weeks post-OVX) showed that AR nuclear localization and expression were maintained in tumors that had progressed, but AR expression was nearly lost in tumors that were regressing. The anti-androgen enzalutamide effectively blocked tumor progression in obese rats by promoting tumor necrosis and also prevented the formation of new tumors after OVX. Neither circulating nor mammary adipose tissue levels of the AR ligand testosterone were elevated in obese compared to lean rats; however, IL-6, which we previously reported to be higher in plasma from obese versus lean rats, sensitized breast cancer cells to low levels of testosterone. Our study demonstrates that, in the context of obesity, AR plays a role in driving ER-positive mammary tumor progression in an environment of low estrogen availability, and that circulating factors unique to the obese host, including IL-6, may influence how cancer cells respond to steroid hormones.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Ovário/metabolismo , Receptores Androgênicos/metabolismo , Tecido Adiposo/metabolismo , Animais , Antineoplásicos/farmacologia , Benzamidas , Biomarcadores , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatografia Líquida , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Neoplasias Mamárias Experimentais , Espectrometria de Massas , Nitrilas , Obesidade/sangue , Ovariectomia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Pós-Menopausa , Ratos , Esteroides/sangue , Esteroides/metabolismo , Testosterona/metabolismo , Testosterona/farmacologia
9.
Cancer Prev Res (Phila) ; 10(3): 198-207, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28154203

RESUMO

Several epidemiologic studies have associated metformin treatment with a reduction in breast cancer incidence in prediabetic and type II diabetic populations. Uncertainty exists regarding which patient populations and/or tumor subtypes will benefit from metformin treatment, and most preclinical in vivo studies have given little attention to the cellular pharmacology of intratumoral metformin uptake. Epidemiologic reports consistently link western-style high fat diets (HFD), which drive overweight and obesity, with increased risk of breast cancer. We used a rat model of HFD-induced overweight and mammary carcinogenesis to define intratumoral factors that confer metformin sensitivity. Mammary tumors were initiated with 1-methyl-1-nitrosourea, and rats were randomized into metformin-treated (2 mg/mL drinking water) or control groups (water only) for 8 weeks. Two-thirds of existing mammary tumors responded to metformin treatment with decreased tumor volumes (P < 0.05), reduced proliferative index (P < 0.01), and activated AMPK (P < 0.05). Highly responsive tumors accumulated 3-fold greater metformin amounts (P < 0.05) that were positively correlated with organic cation transporter-2 (OCT2) protein expression (r = 0.57; P = 0.038). Importantly, intratumoral metformin concentration negatively associated with tumor volume (P = 0.03), and each 10 pmol increase in intratumoral metformin predicted >0.11 cm3 reduction in tumor volume. Metformin treatment also decreased proinflammatory arachidonic acid >1.5-fold in responsive tumors (P = 0.023). Collectively, these preclinical data provide evidence for a direct effect of metformin in vivo and suggest that OCT2 expression may predict metformin uptake and tumor response. Cancer Prev Res; 10(3); 198-207. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Mamárias Experimentais/patologia , Metformina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Hipoglicemiantes/farmacologia , Transportador 2 de Cátion Orgânico , Ratos , Ratos Wistar
10.
Breast Cancer Res ; 18(1): 131, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27998284

RESUMO

BACKGROUND: Altered tumor cell metabolism is an emerging hallmark of cancer; however, the precise role for glucose in tumor initiation is not known. GLUT1 (SLC2A1) is expressed in breast cancer cells and is likely responsible for avid glucose uptake observed in established tumors. We have shown that GLUT1 was necessary for xenograft tumor formation from primary mammary cells transformed with the polyomavirus middle-T antigen but that it was not necessary for growth after tumors had formed in vivo, suggesting a differential requirement for glucose depending on the stage of tumorigenesis. METHODS: To determine whether GLUT1 is required early during mammary tumorigenesis, we crossed MMTV-NIC mice, which express activated HER2/NEU/ERBB2 and Cre recombinase, to Slc2a1 Flox/Flox (GLUT1Flox/Flox) mice to generate NIC-GLUT1+/+, NIC-GLUT1Flox/+, and NIC-GLUT1Flox/Flox mice. In addition, we evaluated effects of glucose restriction or GLUT1 inhibition on transformation in MCF10A-ERBB2 breast epithelial cells in three-dimensional culture. Finally, we utilized global gene expression profiling data of primary human breast tumors to determine the relationship between SLC2A1 and stage of tumorigenesis. RESULTS: All of the NIC-GLUT1+/+ mice developed tumors in less than 200 days. In contrast, only 1 NIC-GLUT1Flox/Flox mouse and 1 NIC-GLUT1Flox/+ mouse developed mammary tumors, even after 18 months. Mammary gland development was not disrupted in NIC mice lacking GLUT1; however, epithelial content of mature glands was reduced compared to NIC-GLUT1Flox/+ mice. In MCF10A-ERBB2 cells, glucose restriction or GLUT1 inhibition blocked transformation induced by activated ERBB2 through reduced cell proliferation. In human breast cancers, SLC2A1 was higher in ductal carcinoma in situ compared to the normal breast, but lower in invasive versus in situ lesions, suggesting the requirement for GLUT1 decreases as tumors progress. CONCLUSIONS: This study demonstrates a strict requirement for GLUT1 in the early stages of mammary tumorigenesis in vitro and in vivo. While metabolic adaptation has emerged as a hallmark of cancer, our data indicate that early tumor cells rely heavily on glucose and highlight the potential for glucose restriction as a breast cancer preventive strategy.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Receptor ErbB-2/genética , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Técnicas de Inativação de Genes , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Neoplasias Mamárias Experimentais , Camundongos , Camundongos Transgênicos , Receptor ErbB-2/metabolismo
11.
Breast Cancer Res ; 16(6): 481, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25472762

RESUMO

INTRODUCTION: Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. METHODS: Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. RESULTS: S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation. CONCLUSIONS: This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes.


Assuntos
Neoplasias da Mama/genética , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Modelos Animais de Doenças , Ácido Graxo Sintases , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo , Camundongos , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
12.
Horm Cancer ; 5(6): 374-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25213330

RESUMO

The anti-diabetic drug metformin (1,1-dimethylbiguanide hydrochloride) reduces both the incidence and mortality of several types of cancer. Metformin has been shown to selectively kill cancer stem cells, and triple-negative breast cancer (TNBC) cell lines are more sensitive to the effects of metformin as compared to luminal breast cancer. However, the mechanism underlying the enhanced susceptibility of TNBC to metformin has not been elucidated. Expression profiling of metformin-treated TNBC lines revealed fatty acid synthase (FASN) as one of the genes most significantly downregulated following 24 h of treatment, and a decrease in FASN protein was also observed. Since FASN is critical for de novo fatty acid synthesis and is important for the survival of TNBC, we hypothesized that FASN downregulation facilitates metformin-induced apoptosis. Profiling studies also exposed a rapid metformin-induced increase in miR-193 family members, and miR-193b directly targets the FASN 3'UTR. Addition of exogenous miR-193b mimic to untreated TNBC cells decreased FASN protein expression and increased apoptosis of TNBC cells, while spontaneously immortalized, non-transformed breast epithelial cells remained unaffected. Conversely, antagonizing miR-193 activity impaired the ability of metformin to decrease FASN and cause cell death. Further, the metformin-stimulated increase in miR-193 resulted in reduced mammosphere formation by TNBC lines. These studies provide mechanistic insight into metformin-induced killing of TNBC.


Assuntos
Ácido Graxo Sintase Tipo I/metabolismo , Metformina/uso terapêutico , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Regiões 3' não Traduzidas/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/patologia
14.
J Biol Chem ; 289(15): 10900-10908, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24569990

RESUMO

Radiation therapy for head and neck cancer can result in extensive damage to normal adjacent tissues such as the salivary gland and oral mucosa. We have shown previously that tyrosine phosphorylation at Tyr-64 and Tyr-155 activates PKCδ in response to apoptotic stimuli by facilitating its nuclear import. Here we have identified the tyrosine kinases that mediate activation of PKCδ in apoptotic cells and have explored the use of tyrosine kinase inhibitors for suppression of irradiation-induced apoptosis. We identify the damage-inducible kinase, c-Abl, as the PKCδ Tyr-155 kinase and c-Src as the Tyr-64 kinase. Depletion of c-Abl or c-Src with shRNA decreased irradiation- and etoposide-induced apoptosis, suggesting that inhibitors of these kinases may be useful therapeutically. Pretreatment with dasatinib, a broad spectrum tyrosine kinase inhibitor, blocked phosphorylation of PKCδ at both Tyr-64 and Tyr-155. Expression of "gate-keeper" mutants of c-Abl or c-Src that are active in the presence of dasatinib restored phosphorylation of PKCδ at Tyr-155 and Tyr-64, respectively. Imatinib, a c-Abl-selective inhibitor, also specifically blocked PKCδ Tyr-155 phosphorylation. Dasatinib and imatinib both blocked binding of PKCδ to importin-α and nuclear import, demonstrating that tyrosine kinase inhibitors can inhibit nuclear accumulation of PKCδ. Likewise, pretreatment with dasatinib also suppressed etoposide and radiation induced apoptosis in vitro. In vivo, pre-treatment of mice with dasatinib blocked radiation-induced apoptosis in the salivary gland by >60%. These data suggest that tyrosine kinase inhibitors may be useful prophylactically for protection of nontumor tissues in patients undergoing radiotherapy of the head and neck.


Assuntos
Proteína Quinase C-delta/antagonistas & inibidores , Glândulas Salivares/enzimologia , Glândulas Salivares/efeitos da radiação , Transporte Ativo do Núcleo Celular , Animais , Apoptose , Proteína Tirosina Quinase CSK , Núcleo Celular/metabolismo , Dano ao DNA , Dasatinibe , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/química , Tiazóis/química , Tirosina/metabolismo , alfa Carioferinas/metabolismo , Quinases da Família src/metabolismo
15.
Mol Cell Biol ; 34(7): 1363-77, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24469394

RESUMO

Stat5 (signal transducer and activator of transcription 5) is an essential mediator of cytokine receptor signaling and plays important roles in the proliferation of alveolar progenitors and the survival of functionally differentiated epithelial cells in the mammary gland. A deregulated expression and activation of Stat5 leads to precocious alveolar development in the absence of pregnancy hormones, impaired mammary gland remodeling following the cessation of lactation, and mammary tumor formation. We reported previously that Stat5 induces the transcription of the Akt1 gene from a novel promoter. In this report, we provide experimental evidence that Akt1 is an essential mediator for the biological function of Stat5 as a survival factor. Additionally, Stat5 controls the expression of the regulatory and catalytic subunits of the phosphatidylinositol 3-kinase (PI3K) (p85α and p110α), thereby greatly augmenting signaling through the prosurvival PI3K/Akt pathway. In agreement with this model, we observed that the constitutive activation of Stat5 cooperates with the loss of function of the tumor suppressor PTEN by accelerating the formation of preneoplastic lesions and mammary tumors. The mammary gland-specific ablation of Stat5 is sufficient to prevent mammary carcinogenesis in a genuine mouse model for Cowden syndrome. Therefore, targeting the Jak2/Stat5 pathway might be a suitable strategy to prevent breast cancer in patients that carry a mutant PTEN allele.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Feminino , Técnicas de Inativação de Genes , Síndrome do Hamartoma Múltiplo/etiologia , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/metabolismo , Humanos , Janus Quinase 2/metabolismo , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/deficiência , Fator de Transcrição STAT5/genética , Transdução de Sinais
16.
Cell Cycle ; 12(24): 3759-69, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24107633

RESUMO

Metformin treatment has been associated with a decrease in breast cancer risk and improved survival. Metformin induces complex cellular changes, resulting in decreased tumor cell proliferation, reduction of stem cells, and apoptosis. Using a carcinogen-induced rodent model of mammary tumorigenesis, we recently demonstrated that overfeeding in obese animals is associated with a 50% increase in tumor glucose uptake, increased proliferation, and tumor cell reprogramming to an "aggressive" metabolic state. Metformin significantly inhibited these pro-tumorigenic effects. We hypothesized that a dynamic relationship exists between chronic energy excess (glucose by dose) and metformin efficacy/action. Media glucose concentrations above 5 mmol/L was associated with significant increase in breast cancer cell proliferation, clonogenicity, motility, upregulation/activation of pro-oncogenic signaling, and reduction in apoptosis. These effects were most significant in triple-negative breast cancer (TNBC) cell lines. High-glucose conditions (10 mmol/L or above) significantly abrogated the effects of metformin. Mechanisms of metformin action at normal vs. high glucose overlapped but were not identical; for example, metformin reduced IGF-1R expression in both the HER2+ SK-BR-3 and TNBC MDA-MB-468 cell lines more significantly at 5, as compared with 10 mmol/L glucose. Significant changes in gene profiles related to apoptosis, cellular processes, metabolic processes, and cell proliferation occurred with metformin treatment in cells grown at 5 mmol/L glucose, whereas under high-glucose conditions, metformin did not significantly increase apoptotic/cellular death genes. These data indicate that failure to maintain glucose homeostasis may promote a more aggressive breast cancer phenotype and alter metformin efficacy and mechanisms of action.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Glucose/metabolismo , Humanos , Transdução de Sinais
17.
J Am Heart Assoc ; 2(5): e000301, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24052497

RESUMO

BACKGROUND: Increased glucose transporter 1 (GLUT1) expression and glucose utilization that accompany pressure overload-induced hypertrophy (POH) are believed to be cardioprotective. Moreover, it has been shown that lifelong transgenic overexpression of GLUT1 in the heart prevents cardiac dysfunction after aortic constriction. The relevance of this model to clinical practice is unclear because of the life-long duration of increased glucose metabolism. Therefore, we sought to determine if a short-term increase in GLUT1-mediated myocardial glucose uptake would still confer cardioprotection if overexpression occurred at the onset of POH. METHODS AND RESULTS: Mice with cardiomyocyte-specific inducible overexpression of a hemagglutinin (HA)-tagged GLUT1 transgene (G1HA) and their controls (Cont) were subjected to transverse aortic constriction (TAC) 2 days after transgene induction with doxycycline (DOX). Analysis was performed 4 weeks after TAC. Mitochondrial function, adenosine triphosphate (ATP) synthesis, and mRNA expression of oxidative phosphorylation (OXPHOS) genes were reduced in Cont mice, but were maintained in concert with increased glucose utilization in G1HA following TAC. Despite attenuated adverse remodeling in G1HA relative to control TAC mice, cardiac hypertrophy was exacerbated in these mice, and positive dP/dt (in vivo) and cardiac power (ex vivo) were equivalently decreased in Cont and G1HA TAC mice compared to shams, consistent with left ventricular dysfunction. O-GlcNAcylation of Ca2+ cycling proteins was increased in G1HA TAC hearts. CONCLUSIONS: Short-term cardiac specific induction of GLUT1 at the onset of POH preserves mitochondrial function and attenuates pathological remodeling, but exacerbates the hypertrophic phenotype and is insufficient to prevent POH-induced cardiac contractile dysfunction, possibly due to impaired calcium cycling.


Assuntos
Transportador de Glucose Tipo 1/biossíntese , Mitocôndrias/fisiologia , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo II , Pressão
18.
Cancer Res ; 72(24): 6490-501, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23222299

RESUMO

Obese postmenopausal women have increased risk of breast cancers with poorer clinical outcomes than their lean counterparts. However, the mechanisms underlying these associations are poorly understood. Rodent model studies have recently identified a period of vulnerability for mammary cancer promotion, which emerges during weight gain after the loss of ovarian function (surgical ovariectomy; OVX). Thus, a period of transient weight gain may provide a life cycle-specific opportunity to prevent or treat postmenopausal breast cancer. We hypothesized that a combination of impaired metabolic regulation in obese animals prior to OVX plus an OVX-induced positive energy imbalance might cooperate to drive tumor growth and progression. To determine if lean and obese rodents differ in their metabolic response to OVX-induced weight gain, and whether this difference affects later mammary tumor metabolism, we performed a nutrient tracer study during the menopausal window of vulnerability. Lean animals preferentially deposited excess nutrients to mammary and peripheral tissues rather than to the adjacent tumors. Conversely, obese animals deposited excess nutrients into the tumors themselves. Notably, tumors from obese animals also displayed increased expression of the progesterone receptor (PR). Elevated PR expression positively correlated with tumor expression of glycolytic and lipogenic enzymes, glucose uptake, and proliferation markers. Treatment with the antidiabetic drug metformin during ovariectomy-induced weight gain caused tumor regression and downregulation of PR expression in tumors. Clinically, expression array analysis of breast tumors from postmenopausal women revealed that PR expression correlated with a similar pattern of metabolic upregulation, supporting the notion that PR+ tumors have enhanced metabolic capacity after menopause. Our findings have potential explanative power in understanding why obese, postmenopausal women display an increased risk of breast cancer.


Assuntos
Adenocarcinoma/etiologia , Neoplasias da Mama/etiologia , Metabolismo Energético/fisiologia , Obesidade/complicações , Hipernutrição/complicações , Receptores de Progesterona/metabolismo , Adenocarcinoma/sangue , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Metabolismo Energético/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Lipogênese/genética , Lipogênese/fisiologia , Neoplasias/sangue , Neoplasias/genética , Neoplasias/metabolismo , Obesidade/genética , Obesidade/metabolismo , Ovariectomia , Hipernutrição/genética , Hipernutrição/metabolismo , Pós-Menopausa/genética , Pós-Menopausa/metabolismo , Ratos , Ratos Wistar , Receptores de Progesterona/agonistas , Receptores de Progesterona/genética , Receptores de Progesterona/fisiologia , Aumento de Peso/fisiologia
19.
J Mammary Gland Biol Neoplasia ; 17(2): 167-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22752723

RESUMO

This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond.


Assuntos
Aleitamento Materno , Desenvolvimento Infantil , Lactação , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Leite Humano/metabolismo , Morfogênese , Adulto , Animais , Animais Recém-Nascidos , Pesquisa Biomédica/tendências , Suscetibilidade a Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Intestinos/crescimento & desenvolvimento , Intestinos/microbiologia , Glândulas Mamárias Animais , Doenças Metabólicas/etiologia , Doenças Metabólicas/prevenção & controle , Leite/metabolismo
20.
PLoS One ; 6(8): e23205, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21826239

RESUMO

Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Neoplasias Mamárias Animais/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glucose/metabolismo , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase , Gravidez , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA