Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Kidney Int Rep ; 9(4): 994-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765603

RESUMO

Introduction: Kidney disease of unknown etiology accounts for 1 in 10 adult end-stage renal disease (ESRD) cases worldwide. The aim of this study is to clarify the genetic background of patients with chronic kidney disease (CKD) of unknown etiology who initiated renal replacement therapy (RRT) in adulthood. Methods: This is a multicenter cross-sectional cohort study. Of the 1164 patients who attended 4 dialysis clinics in Japan, we first selected patients who started RRT between the ages of 20 and 49 years. After excluding patients with apparent causes of CKD (e.g., diabetic nephropathy, polycystic kidney disease (PKD) with family history, patients who underwent renal biopsy), 90 patients with CKD of unknown cause were included. The 298 genes associated with CKD were analyzed using capture-based targeted next-generation sequencing. Results: Of the 90 patients, 10 (11.1%) had pathogenic variants in CKD-causing genes and 17 (18.9%) had variant of unknown significance (VUS). Three patients had PKD1 pathogenic variants, and 1 patient had PKD1 and COL4A4 pathogenic variants. In addition, 2 patients were diagnosed with atypical hemolytic uremic syndrome (aHUS) due to C3 or CFHR5. One patient each was diagnosed with Alport syndrome due to COL4A4 and COL4A3 variants, nephronophthisis due to NPHP1 variants, Fabry disease due to GLA variants, and autosomal-dominant tubulointerstitial kidney disease due to UMOD variants. Genetic diagnoses were not concordant with clinical diagnoses, except for patients with PKD1 variant. Conclusion: This largest study on genetic analysis in hemodialysis-dependent adults revealed the presence of undiagnosed inherited kidney diseases.

2.
medRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38633811

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a well-described condition in which ~80% of cases have a genetic explanation, while the genetic basis of sporadic cystic kidney disease in adults remains unclear in ~30% of cases. This study aimed to identify novel genes associated with polycystic kidney disease (PKD) in patients with sporadic cystic kidney disease in which a clear genetic change was not identified in established genes. A next-generation sequencing panel analyzed known genes related to renal cysts in 118 sporadic cases, followed by whole-genome sequencing on 47 unrelated individuals without identified candidate variants. Three male patients were found to have rare missense variants in the X-linked gene Cilia And Flagella Associated Protein 47 (CFAP47). CFAP47 was expressed in primary cilia of human renal tubules, and knockout mice exhibited vacuolation of tubular cells and tubular dilation, providing evidence that CFAP47 is a causative gene involved in cyst formation. This discovery of CFAP47 as a newly identified gene associated with PKD, displaying X-linked inheritance, emphasizes the need for further cases to understand the role of CFAP47 in PKD.

3.
J Physiol ; 601(23): 5437-5451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860942

RESUMO

Aquaporin-2 (AQP2) water channels are proteins that are recycled between intracellular vesicles and the apical plasma membrane in renal collecting ducts. Lipopolysaccharide-responsive beige-like anchor protein (LRBA) is a protein kinase A (PKA) anchoring protein that creates compartmentalized PKA signalling responsible for AQP2 phosphorylation. In response to increased plasma osmolality, vasopressin/cyclic adenosine monophosphate (cAMP)/PKA signalling phosphorylates AQP2, promoting AQP2 trafficking into the apical plasma membrane and increasing water reabsorption from urine. However, the molecular mechanisms by which LRBA mediates vasopressin-induced AQP2 phosphorylation remain unknown. To investigate AQP2 intracellular localization and phosphorylation status in vivo, a density gradient ultracentrifugation technique was combined with an in situ proximity ligation assay, super-resolution structured illumination microscopy and immunoelectron microscopy. Most of the AQP2 was localized on the recycling endosome in the presence of tolvaptan, a vasopressin type 2 receptor (V2R) antagonist. Desmopressin, a V2R agonist, phosphorylated AQP2, translocating it from the recycling endosome to the apical plasma membrane. In contrast, LRBA was constitutively localized at the recycling endosome. Therefore, LRBA and AQP2 were well colocalized in the absence of vasopressin stimulation. The loss of LRBA/PKA signalling by Lrba knockout impaired vasopressin-induced AQP2 phosphorylation, resulting in AQP2 retention at the recycling endosome. Defective AQP2 trafficking caused low urinary concentrating ability in Lrba-/- mice. The LRBA-PKA complex created compartmentalized PKA signalling at the recycling endosome, which facilitated AQP2 phosphorylation in response to vasopressin. KEY POINTS: Membrane proteins are continuously internalized into the endosomal system via endocytosis, after which they are either recycled back to the plasma membrane or degraded at the lysosome. In T cells, lipopolysaccharide-responsive beige-like anchor protein (LRBA) binds directly to the cytotoxic T lymphocyte antigen 4 (CTLA-4), a checkpoint immune molecule, to prevent CTLA-4 lysosomal degradation and promote its vesicle recycling. LRBA has different physiological functions in renal collecting ducts. LRBA and aquaporin-2 (AQP2) water channels were colocalized on the recycling endosome in vivo in the absence of the anti-diuretic hormone vasopressin. LRBA promoted vasopressin-induced AQP2 trafficking, increasing water reabsorption from urine via AQP2. LRBA determined renal responsiveness to vasopressin at recycling endosomes. LRBA is a ubiquitously expressed anchor protein. LRBA signalosomes might regulate membrane trafficking of several constitutively recycled proteins at recycling endosomes.


Assuntos
Aquaporina 2 , Túbulos Renais Coletores , Camundongos , Animais , Aquaporina 2/metabolismo , Antígeno CTLA-4/metabolismo , Lipopolissacarídeos/metabolismo , Transporte Proteico , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Endossomos/metabolismo , Antagonistas dos Receptores de Hormônios Antidiuréticos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Água/metabolismo , Fosforilação
4.
Hypertension ; 80(12): 2591-2600, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818643

RESUMO

BACKGROUND: Despite increasing incidences of hypertension, recent trends in mortality and urgent dialysis following acute hypertension (AHT) remain undetermined. METHODS: This retrospective observational cohort study evaluated 50 316 hospitalized AHT patients from 2010 to 2019, using an administrative claims database in Japan. We examined trends in incidence, urgent dialysis, mortality, and its risk factors using Poisson regression models. Using International Classification of Disease and Related Health Problems, 10th Revision codes, AHT was categorized into 5 spectrums: malignant hypertension (n=1792), hypertensive emergency (n=17 907), hypertensive urgency (n=1562), hypertensive encephalopathy (n=6593), and hypertensive heart failure (HHF; n=22 462). RESULTS: The median age of the patients was 76 years, and 54.9% were women. The total AHT incidence was 70 cases per 100 000 admission year. The absolute death rate increased from 1.83% (95% CI, 1.40-2.40) to 2.88% ([95% CI, 2.42-3.41]; Cochran-Armitage trend test, P<0.0001). Upward trends were observed in patients aged ≥80, with lean body mass index ≤18.4, and with HHF. Urgent dialysis rates increased from 1.52% (95% CI, 1.12-2.06) to 2.60% (2.17-3.1; Cochran-Armitage trend test; P=0.0071) in 48 235 patients, excluding maintenance dialysis patients. Older age, men, lean body mass, malignant hypertension, HHF, and underlying chronic kidney disease correlated with higher mortality risk; greater hospital volume correlated with lower mortality risk; and malignant hypertension, HHF, diabetes, chronic kidney disease, and scleroderma correlated with a higher risk of urgent dialysis. CONCLUSIONS: Mortality and urgent dialysis rates following AHT have increased. Aging, complex comorbidities, and HHF-type AHT contributed to the rising trend of mortality.


Assuntos
Hipertensão Maligna , Hipertensão , Insuficiência Renal Crônica , Masculino , Humanos , Feminino , Idoso , Diálise Renal/efeitos adversos , Estudos Retrospectivos , Japão/epidemiologia , Hipertensão/epidemiologia , Fatores de Risco
5.
BMC Nephrol ; 24(1): 108, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095451

RESUMO

BACKGROUND: As messenger RNA (mRNA)-based vaccines for coronavirus disease 2019 (COVID-19) have been administered to millions of individuals worldwide, cases of de novo and relapsing glomerulonephritis after mRNA COVID-19 vaccination are increasing in the literature. While most previous publications reported glomerulonephritis after the first or second dose of an mRNA vaccine, few reports of glomerulonephritis occurring after the third dose of an mRNA vaccine currently exist. CASE PRESENTATION: We report a case of rapidly progressive glomerulonephritis in a patient following the third dose of an mRNA COVID-19 vaccine. A 77-year-old Japanese man with a history of hypertension and atrial fibrillation was referred to our hospital for evaluation of anorexia, pruritus, and lower extremity edema. One year before referral, he received two mRNA vaccines (BNT162b2) for COVID-19. Three months before the visit, he received a third mRNA vaccine (mRNA-1273) for COVID-19. On admission, the patient presented severe renal failure with a serum creatinine level of 16.29 mg/dL, which had increased from 1.67 mg/dL one month earlier, prompting us to initiate hemodialysis. Urinalysis showed nephrotic-range proteinuria and hematuria. Renal biopsy revealed mild mesangial proliferation and expansion, a lobular appearance, and double contours of the glomerular basement membrane. Renal tubules had severe atrophy. Immunofluorescence microscopy showed strong mesangial staining for IgA, IgM, and C3c. Electron microscopy exhibited mesangial and subendothelial electron-dense deposits, leading to a diagnosis of IgA nephropathy with membranoproliferative glomerulonephritis-like changes. The kidney function remained unchanged after steroid therapy. CONCLUSIONS: Although the link between renal lesions and mRNA vaccines remains unclear, a robust immune response induced by mRNA vaccines may play a role in the pathogenesis of glomerulonephritis. Further studies of the immunological effects of mRNA vaccines on the kidney are warranted.


Assuntos
COVID-19 , Glomerulonefrite por IGA , Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Masculino , Humanos , Idoso , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite Membranoproliferativa/patologia , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/complicações , Glomerulonefrite/patologia
6.
Int J Rheum Dis ; 26(8): 1603-1607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36880594

RESUMO

Avacopan is a novel C5a receptor antagonist recently approved for the treatment of microscopic polyangiitis and granulomatosis with polyangiitis. To our knowledge, thrombocytopenia induced by avacopan has not been reported. We report a case of a 78-year-old man with microscopic polyangiitis who developed rapidly progressive glomerulonephritis (RPGN) and vasculitis neuropathy. After developing RPGN, he was treated with prednisolone, which was ineffective. As the dosage of corticosteroids was decreased, he developed impaired dorsiflexion of the left ankle, tingling and numbness in his feet, consistent with vasculitis neuropathy. After a 3-day administration of methylprednisolone, we started avacopan and prednisolone 20 mg/d to reduce the corticosteroid dosage. One week after starting avacopan, platelet counts began to decrease, eventually leading to the cessation of the drug. The possibility of thrombotic microangiopathy and heparin-induced thrombocytopenia was considered unlikely given the clinical course and laboratory studies. After 3 weeks of avacopan cessation, platelet counts began to increase, suggesting avacopan as the most probable cause of thrombocytopenia. Our case highlights the importance of postmarketing surveillance of avacopan to identify its adverse events that were not reported in clinical trials to ensure its safe use. Clinicians should carefully monitor platelet counts when using avacopan.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Granulomatose com Poliangiite , Poliangiite Microscópica , Trombocitopenia , Masculino , Humanos , Idoso , Poliangiite Microscópica/tratamento farmacológico , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Trombocitopenia/tratamento farmacológico , Compostos de Anilina/efeitos adversos , Metilprednisolona/uso terapêutico , Granulomatose com Poliangiite/tratamento farmacológico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Anticorpos Anticitoplasma de Neutrófilos
7.
Commun Biol ; 6(1): 29, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631535

RESUMO

Signaling through cAMP/protein kinase A (PKA) promotes endothelial barrier function to prevent plasma leakage induced by inflammatory mediators. The discovery of PKA substrates in endothelial cells increases our understanding of the molecular mechanisms involved in vessel maturation. In this study, we evaluate a cAMP inducer, forskolin, and a phospho-PKA substrate antibody to identify ZNF185 as a PKA substrate. ZNF185 interacts with PKA and colocalizes with F-actin in endothelial cells. Both ZNF185 and F-actin accumulate in the plasma membrane region in response to forskolin to stabilize the cortical actin structure. By contrast, ZNF185 knockdown disrupts actin filaments and promotes stress fiber formation without inflammatory mediators. Constitutive activation of RhoA is induced by ZNF185 knockdown, which results in forskolin-resistant endothelial barrier dysfunction. Knockout of mouse Zfp185 which is an orthologous gene of human ZNF185 increases vascular leakage in response to inflammatory stimuli in vivo. Thrombin protease is used as a positive control to assemble stress fibers via RhoA activation. Unexpectedly, ZNF185 is cleaved by thrombin, resulting in an N-terminal actin-targeting domain and a C-terminal PKA-interacting domain. Irreversible dysfunction of ZNF185 protein potentially causes RhoA-dependent stress fiber formation by thrombin.


Assuntos
Actinas , Células Endoteliais , Proteínas com Domínio LIM , Fibras de Estresse , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , Actinas/metabolismo , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Proteínas com Domínio LIM/metabolismo , Camundongos Knockout , Proteína rhoA de Ligação ao GTP/metabolismo , Fibras de Estresse/metabolismo , Trombina/farmacologia , Trombina/metabolismo
8.
Circ Res ; 132(4): 415-431, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36700539

RESUMO

BACKGROUND: Chronic kidney disease (CKD) accelerates vascular calcification via phenotypic switching of vascular smooth muscle cells (VSMCs). We investigated the roles of circulating small extracellular vesicles (sEVs) between the kidneys and VSMCs and uncovered relevant sEV-propagated microRNAs (miRNAs) and their biological signaling pathways. METHODS AND RESULTS: We established CKD models in rats and mice by adenine-induced tubulointerstitial fibrosis. Cultures of A10 embryonic rat VSMCs showed increased calcification and transcription of osterix (Sp7), osteocalcin (Bglap), and osteopontin (Spp1) when treated with rat CKD serum. sEVs, but not sEV-depleted serum, accelerated calcification in VSMCs. Intraperitoneal administration of a neutral sphingomyelinase and biogenesis/release inhibitor of sEVs, GW4869 (2.5 mg/kg per 2 days), inhibited thoracic aortic calcification in CKD mice under a high-phosphorus diet. GW4869 induced a nearly full recovery of calcification and transcription of osteogenic marker genes. In CKD, the miRNA transcriptome of sEVs revealed a depletion of 4 miRNAs, miR-16-5p, miR-17~92 cluster-originated miR-17-5p/miR-20a-5p, and miR-106b-5p. Their expression decreased in sEVs from CKD patients as kidney function deteriorated. Transfection of VSMCs with each miRNA-mimic mitigated calcification. In silico analyses revealed VEGFA (vascular endothelial growth factor A) as a convergent target of these miRNAs. We found a 16-fold increase in VEGFA transcription in the thoracic aorta of CKD mice under a high-phosphorus diet, which GW4869 reversed. Inhibition of VEGFA-VEGFR2 signaling with sorafenib, fruquintinib, sunitinib, or VEGFR2-targeted siRNA mitigated calcification in VSMCs. Orally administered fruquintinib (2.5 mg/kg per day) for 4 weeks suppressed the transcription of osteogenic marker genes in the mouse aorta. The area under the curve of miR-16-5p, miR-17-5p, 20a-5p, and miR-106b-5p for the prediction of abdominal aortic calcification was 0.7630, 0.7704, 0.7407, and 0.7704, respectively. CONCLUSIONS: The miRNA transcriptomic signature of circulating sEVs uncovered their pathologic role, devoid of the calcification-protective miRNAs that target VEGFA signaling in CKD-driven vascular calcification. These sEV-propagated miRNAs are potential biomarkers and therapeutic targets for vascular calcification.


Assuntos
Vesículas Extracelulares , MicroRNAs , Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Calcificação Vascular/metabolismo , Insuficiência Renal Crônica/metabolismo , Vesículas Extracelulares/metabolismo , Fósforo/metabolismo , Miócitos de Músculo Liso/metabolismo
9.
Int J Surg ; 104: 106816, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35944801

RESUMO

BACKGROUND: Chronic kidney disease is associated with perioperative mortality. However, outcomes of patients who perioperatively received acute dialysis have not been clarified. We aimed to determine risks for in-hospital death and functional decline following various surgeries with an acute dialysis requirement versus maintenance dialysis and non-dialysis. MATERIALS AND METHODS: We analyzed 22,857 patients who underwent major surgeries during hospitalization in Japan from 2018 until 2019 using an inpatient administrative claims database. Risks of overall death and functional decline assessed by Barthel index scores were determined with logistic regression models. RESULTS: Among the propensity score-matched groups, mortality rates were 8.54% [95% confidence interval (CI) 7.92-9.17], 5.97% (95% CI 5.44-6.50), and 1.12% (95% CI 0.88-1.35) with an acute dialysis requirement, maintenance dialysis, and non-dialysis, respectively. The survivor rates with ≥20%-decline in Barthel index scores were 7.67% (95% CI 7.07-8.26), 8.56% (95% CI 7.93-9.19), and 3.48% (95% CI 3.07-3.89), respectively. Lower preoperative Barthel index scores were strongly associated with mortality independent of surgeries. Cardiac surgery, colorectal resection, esophagectomy, and gastrectomy led to higher mortality, while cardiac surgery, and orthopedic surgery were associated with higher risk of functional decline. In addition, mortality rates after hepatic lobectomy/cholecystectomy/pancreatectomy [odds ratio (OR) 3.09, 95% CI 1.61-5.91] and esophagectomy/gastrectomy (OR 2.65, 95% CI 1.68-4.38) were markedly higher with an acute dialysis requirement when compared with maintenance dialysis. CONCLUSION: Perioperative acute dialysis requirements were associated with substantial risks for mortality and functional decline. Several types of surgeries led to even higher mortality rates for acute dialysis than maintenance dialysis.


Assuntos
Diálise Renal , Insuficiência Renal Crônica , Mortalidade Hospitalar , Humanos , Pontuação de Propensão , Estudos Retrospectivos , Fatores de Risco
10.
Proc Natl Acad Sci U S A ; 119(30): e2202125119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862451

RESUMO

Protein kinase A (PKA) directly phosphorylates aquaporin-2 (AQP2) water channels in renal collecting ducts to reabsorb water from urine for the maintenance of systemic water homeostasis. More than 50 functionally distinct PKA-anchoring proteins (AKAPs) respectively create compartmentalized PKA signaling to determine the substrate specificity of PKA. Identification of an AKAP responsible for AQP2 phosphorylation is an essential step toward elucidating the molecular mechanisms of urinary concentration. PKA activation by several compounds is a novel screening strategy to uncover PKA substrates whose phosphorylation levels were nearly perfectly correlated with that of AQP2. The leading candidate in this assay proved to be an AKAP termed lipopolysaccharide-responsive and beige-like anchor protein (LRBA). We found that LRBA colocalized with AQP2 in vivo, and Lrba knockout mice displayed a polyuric phenotype with severely impaired AQP2 phosphorylation. Most of the PKA substrates other than AQP2 were adequately phosphorylated by PKA in the absence of LRBA, demonstrating that LRBA-anchored PKA preferentially phosphorylated AQP2 in renal collecting ducts. Furthermore, the LRBA-PKA interaction, rather than other AKAP-PKA interactions, was robustly dissociated by PKA activation. AKAP-PKA interaction inhibitors have attracted attention for their ability to directly phosphorylate AQP2. Therefore, the LRBA-PKA interaction is a promising drug target for the development of anti-aquaretics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Aquaporina 2 , Água Corporal , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Água Corporal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homeostase , Camundongos , Fosforilação
11.
Clin Exp Nephrol ; 25(10): 1051-1056, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34224008

RESUMO

BACKGROUND: Congenital nephrogenic diabetes insipidus (NDI) is primarily caused by loss-of-function mutations in the vasopressin type 2 receptor (V2R). Renal unresponsiveness to the antidiuretic hormone vasopressin impairs aquaporin-2 (AQP2) water channel activity and water reabsorption from urine, resulting in polyuria. Currently available symptomatic treatments inadequately reduce patients' excessive amounts of urine excretion, threatening their quality of life. In the past 25 years, vasopressin/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) has been believed to be the most important signaling pathway for AQP2 activation. Although cAMP production without vasopressin is the reasonable therapeutic strategy for congenital NDI caused by V2R mutations, the efficacy of candidate drugs on AQP2 activation is far less than that of vasopressin. RESULTS: Intracellular distribution and activity of PKA are largely controlled by its scaffold proteins, A-kinase anchoring proteins (AKAPs). Dissociating the binding of AKAPs and PKA significantly increased PKA activity in the renal collecting ducts and activated AQP2 phosphorylation and trafficking. Remarkably, the AKAPs-PKA disruptor FMP-API-1 increased transcellular water permeability in isolated renal collecting ducts to the same extent as vasopressin. Moreover, derivatives of FMP-API-1 possessed much more high potency. FMP-API-1/27 is the first low-molecular-weight compound to be discovered that can phosphorylate AQP2 more effectively than preexisting drug candidates. CONCLUSION: AKAP-PKA disruptors are a promising therapeutic target for congenital NDI. In this article, we shall discuss the pathophysiological roles of PKA and novel strategies to activate PKA in renal collecting ducts.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Aquaporina 2/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/metabolismo , Água/metabolismo , Aminofenóis/farmacologia , Aminofenóis/uso terapêutico , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Diabetes Insípido Nefrogênico/congênito , Diabetes Insípido Nefrogênico/genética , Humanos , Mutação com Perda de Função , Fosforilação/efeitos dos fármacos , Receptores de Vasopressinas/genética , Transdução de Sinais/efeitos dos fármacos , Vasopressinas/metabolismo
12.
Kidney Int Rep ; 6(5): 1346-1354, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34013113

RESUMO

INTRODUCTION: Recently, nephronophthisis (NPH) has been considered a monogenic cause of end-stage renal disease (ESRD) in adults. However, adult-onset NPH is difficult to accurately diagnose and has not been reported in a cohort study. In this study, we assessed the genetic background and clinicopathologic features of adult NPH. METHODS: We investigated 18 sporadic adult patients who were suspected as having NPH by renal biopsy. We analyzed 69 genes that cause hereditary cystic kidney disease and compared clinicopathologic findings between patients with and without pathogenic mutations in NPH-causing genes. RESULTS: Seven of 18 patients had pathogenic NPH-causing mutations in NPHP1, NPHP3, NPHP4, or CEP164. Compared with patients without pathogenic mutations, those with pathogenic mutations were significantly younger but did not significantly differ in the classic NPH pathologic findings, such as tubular cysts. On the other hand, the number of tubules with thick tubular basement membrane (TBM) duplication, which was defined as >10-µm thickness, was significantly higher in patients with genetically proven adult NPH than in those without pathogenic mutations. α-Smooth muscle actin (α-SMA)-positive myofibroblasts were detected inside thick TBM duplication. CONCLUSIONS: In adult patients with NPH, thick TBM duplication was the specific finding. Our analysis also suggested that older patients tended to have no pathogenic mutations, even when they were suspected to have NPH by renal biopsy. These findings could be the novel clinical clue for the diagnosis of NPH in adult patients.

14.
Biochem Biophys Res Commun ; 533(4): 1290-1297, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33046244

RESUMO

With-no-lysine kinase (WNK) plays important roles in regulating electrolyte homeostasis, cell signaling, survival, and proliferation. It has been recently demonstrated that WNK1, a member of the WNK family, modifies the function of immune cells. Here we report that in macrophages, WNK1 has suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses via TGFß-activated kinase 1 (TAK1)-mediated activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway. We found that WNK1 heterozygous (WNK1+/-) mice produced excessive proinflammatory cytokines in an experimental LPS-induced sepsis model, and peritoneal macrophages isolated from WNK1+/- mice produced higher levels of LPS-induced cytokines and NOS2 expression as canonical proinflammatory M1 macrophage markers. We confirmed that small hairpin RNA (shRNA)-mediated knockdown of WNK1 activated LPS-induced cytokine production and NOS2 expression in RAW 264.7 macrophages. Moreover, we demonstrated that WNK1 knockdown increased the nuclear translocation of NF-κB and activated the p38 and Jun N-terminal kinase (JNK) MAPK signaling pathway and that a TAK1 inhibitor diminished these effects of WNK1 knockdown. These results suggest that WNK1 acts as a physiologic immune modulator via interactions with TAK1. WNK1 may be a therapeutic target against the cytokine storm caused by sepsis.


Assuntos
Citocinas/biossíntese , MAP Quinase Quinase Quinases/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Sepse/imunologia , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Animais , Células Cultivadas , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos , MAP Quinase Quinase Quinases/fisiologia , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células RAW 264.7 , Sepse/induzido quimicamente , Sepse/enzimologia , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Kidney Int ; 97(4): 713-727, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32059997

RESUMO

The inappropriate over-activation of the with-no-lysine kinase (WNK)-STE20/SPS1-related proline/alanine-rich kinase (SPAK)-sodium chloride cotransporter (NCC) phosphorylation cascade increases sodium reabsorption in distal kidney nephrons, resulting in salt-sensitive hypertension. Although chronic kidney disease (CKD) is a common cause of salt-sensitive hypertension, the involvement of the WNK phosphorylation cascade is unknown. Moreover, the effect of immune systems on WNK kinases has not been investigated despite the fact that immune systems are important for salt sensitivity. Here we demonstrate that the protein abundance of WNK1, but not of WNK4, was increased at the distal convoluted tubules in the aristolochic acid nephropathy mouse model of CKD. Accordingly, the phosphorylation of both SPAK and NCC was also increased. Moreover, a high-salt diet did not adequately suppress activation of the WNK1-SPAK-NCC phosphorylation cascade in this model, leading to salt-sensitive hypertension. WNK1 also was increased in adenine nephropathy, but not in subtotal nephrectomy, models of CKD. By comparing the transcripts of these three models focusing on immune systems, we hypothesized that tumor necrosis factor (TNF)-α regulates WNK1 protein expression. In fact, TNF-α increased WNK1 protein expression in cultured renal tubular cells by reducing the transcription and protein levels of NEDD4-2 E3-ligase, which degrades WNK1 protein. Furthermore, the TNF-α inhibitor etanercept reversed the reduction of NEDD4-2 expression and upregulation of the WNK1-SPAK-NCC phosphorylation cascade in distal convoluted tubules in vivo in the aristolochic acid nephropathy model. Thus, salt-sensitive hypertension is induced in CKD via activation of the renal WNK1- SPAK-NCC phosphorylation cascade by TNF-α, reflecting a link with the immune system.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Animais , Hipertensão/induzido quimicamente , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Fator de Necrose Tumoral alfa , Proteína Quinase 1 Deficiente de Lisina WNK
16.
Kidney Int ; 95(1): 123-137, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455054

RESUMO

The kidneys consume a large amount of energy to regulate volume status and blood pressure and to excrete uremic toxins. The identification of factors that cause energy mismatch in the setting of chronic kidney disease (CKD) and the development of interventions aimed at improving this mismatch are key research imperatives. Although the critical cellular energy sensor 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is known to be inactivated in CKD, the mechanism of AMPK dysregulation is unknown. In a mouse model of CKD, metabolome analysis confirmed a decrease in AMPK activation in the kidneys despite a high AMP: ATP ratio, suggesting that AMPK did not sense energy depletion. Similar AMPK inactivation was found in heart and skeletal muscle in CKD mice. Several uremic factors were shown to inactivate AMPK in vitro and in ex vivo preparations of kidney tissue. The specific AMPK activator A-769662, which bypasses the AMP sensing mechanism, ameliorated fibrosis and improved energy status in the kidneys of CKD mice, whereas an AMP analog did not. We further demonstrated that a low-protein diet activated AMPK independent of the AMP sensing mechanism, leading to improvement in energy metabolism and kidney fibrosis. These results suggest that a failure to sense AMP is the key mechanism underlying the vicious cycle of energy depletion and CKD progression and direct AMPK activation may be a novel therapeutic approach in CKD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dieta com Restrição de Proteínas , Metabolismo Energético/fisiologia , Rim/patologia , Insuficiência Renal Crônica/patologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos de Bifenilo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Fibrose/metabolismo , Humanos , Rim/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Pironas/farmacologia , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tiofenos/farmacologia
17.
Nat Commun ; 9(1): 1411, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650969

RESUMO

Congenital nephrogenic diabetes insipidus (NDI) is characterized by the inability of the kidney to concentrate urine. Congenital NDI is mainly caused by loss-of-function mutations in the vasopressin type 2 receptor (V2R), leading to impaired aquaporin-2 (AQP2) water channel activity. So far, treatment options of congenital NDI either by rescuing mutant V2R with chemical chaperones or by elevating cyclic adenosine monophosphate (cAMP) levels have failed to yield effective therapies. Here we show that inhibition of A-kinase anchoring proteins (AKAPs) binding to PKA increases PKA activity and activates AQP2 channels in cortical collecting duct cells. In vivo, the low molecular weight compound 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives increase AQP2 activity to the same extent as vasopressin, and increase urine osmolality in the context of V2R inhibition. We therefore suggest that FMP-API-1 may constitute a promising lead compound for the treatment of congenital NDI caused by V2R mutations.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Aquaporina 2/genética , Compostos Benzidrílicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Diabetes Insípido Nefrogênico/tratamento farmacológico , Fenóis/farmacologia , Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Animais , Aquaporina 2/agonistas , Aquaporina 2/metabolismo , Arginina Vasopressina , Benzazepinas/antagonistas & inibidores , Benzazepinas/farmacologia , Linhagem Celular Transformada , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Nefrogênico/patologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Masculino , Camundongos Endogâmicos C57BL , Concentração Osmolar , Ligação Proteica/efeitos dos fármacos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Tolvaptan , Água/metabolismo
18.
Clin Exp Nephrol ; 22(3): 501-507, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29478202

RESUMO

Congenital nephrogenic diabetes insipidus (NDI) is characterized by defective urine concentrating ability. Symptomatic polyuria is present from birth, even with normal release of the antidiuretic hormone vasopressin by the pituitary. Over the last two decades, the aquaporin-2 (AQP2) gene has been cloned and the molecular mechanisms of urine concentration have been gradually elucidated. Vasopressin binds to the vasopressin type II receptor (V2R) in the renal collecting ducts and then activates AQP2 phosphorylation and trafficking to increase water reabsorption from urine. Most cases of congenital NDI are caused by loss-of-function mutations to V2R, resulting in unresponsiveness to vasopressin. In this article, we provide an overview of novel therapeutic molecules of congenital NDI that can activate AQP2 by bypassing defective V2R signaling with a particular focus on the activators of the calcium and cAMP signaling pathways.


Assuntos
Aquaporina 2/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Diabetes Insípido Nefrogênico/tratamento farmacológico , Terapia de Alvo Molecular , Animais , AMP Cíclico/metabolismo , Diabetes Insípido Nefrogênico/metabolismo , Humanos , Inibidores de Fosfodiesterase/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas
19.
Sci Rep ; 7(1): 3945, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638054

RESUMO

The Kelch-like ECH-associating protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway is the major regulator of cytoprotective responses to oxidative and electrophilic stress. The Cul3/Keap1 E3 ubiquitin ligase complex interacts with Nrf2, leading to Nrf2 ubiquitination and degradation. In this study, we focused on the disruption of the Keap1-Nrf2 interaction to upregulate Nrf2 expression and the transcription of ARE-controlled cytoprotective oxidative stress response enzymes, such as HO-1. We completed a drug-repositioning screening for inhibitors of Keap1-Nrf2 protein-protein interactions using a newly established fluorescence correlation spectroscopy (FCS) screening system. The binding reaction between Nrf2 and Keap1 was successfully detected with a KD of 2.6 µM using our FCS system. The initial screening of 1,633 drugs resulted in 12 candidate drugs. Among them, 2 drugs significantly increased Nrf2 protein levels in HepG2 cells. These two promising drugs also upregulated ARE gene promoter activity and increased HO-1 mRNA expression, which confirms their ability to dissociate Nrf2 and Keap1. Thus, drug-repositioning screening for Keap1-Nrf2 binding inhibitors using FCS enabled us to find two promising known drugs that can induce the activation of the Nrf2-ARE pathway.


Assuntos
Reposicionamento de Medicamentos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta Antioxidante , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Estresse Oxidativo , Ligação Proteica , Espectrometria de Fluorescência , Regulação para Cima
20.
Sci Rep ; 7: 46369, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28417963

RESUMO

Muscle wasting or sarcopenia contributes to morbidity and mortality in patients with cancer, renal failure, or heart failure, and in elderly individuals. Na+-K+-2Cl- cotransporter 1 (NKCC1) is highly expressed in mammalian skeletal muscle, where it contributes to the generation of membrane ion currents and potential. However, the physiologic function of NKCC1 in myogenesis is unclear. We investigated this issue using the NKCC1 inhibitors bumetanide and furosemide, which are commonly used loop diuretics. NKCC1 protein levels increased during C2C12 murine skeletal myoblast differentiation, similarly to those of the myogenic markers myogenin and myosin heavy chain (MHC). NKCC1 inhibitors markedly suppressed myoblast fusion into myotubes and the expression of myogenin and MHC. Furthermore, phosphorylated and total NKCC1 levels were elevated in mouse skeletal muscles after 6 weeks' voluntary wheel running. Immunofluorescence analyses of myofiber cross-sections revealed more large myofibers after exercise, but this was impaired by daily intraperitoneal bumetanide injections (0.2 or 10 mg/kg/day). NKCC1 plays an essential role in myogenesis and exercise-induced skeletal muscle hypertrophy, and sarcopenia in patients with renal or heart failure may be attributable to treatment with loop diuretics.


Assuntos
Diuréticos/administração & dosagem , Mioblastos/citologia , Sarcopenia/etiologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Regulação para Cima , Animais , Bumetanida/administração & dosagem , Bumetanida/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Diuréticos/farmacologia , Furosemida/administração & dosagem , Furosemida/farmacologia , Injeções Intraperitoneais , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação , Corrida , Sarcopenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA