Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(6): e0218576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31226153

RESUMO

Two types of gammaherpesviruses (γEHV) are known to infect horses, EHV-2 and EHV-5. Foals become infected early in life, probably via the upper respiratory tract, despite maternal antibodies. In this study, we analyzed samples from a herd of mares and their foals. The foals were followed from birth to 22 months of age and the dams during the first 6 months postpartum. Blood and nasal swab samples were taken regularly for evaluation of antibody responses, virus isolation and viral load by qPCR. EHV-2 was isolated on day 5, and EHV-5 on day 12, earlier than previously reported. γEHV specific antibodies were not detectable in serum of foals before colostrum intake but peaked a few days after colostrum. Overall, EHV-2 viral load peaked in nasal swab at three to four months of age, paralleled with decline in maternal antibodies, but EHV-5 viral load did not peak until month 12. Maternal antibodies had a notable effect on the viral load and induction of endogenous antibody production. Foals were grouped in two groups depending on the mare's γEHV specific total IgG levels in serum at birth, group-high and group-low. Group-high had higher levels of maternal γEHV specific total IgG and IgG4/7 for the first 3 months, but when the endogenous production had superseded maternal antibodies, group-low was higher. The maternal antibodies had an effect on the γEHV viral load. Group-low peaked in EHV-2 viral load one month earlier than group-high. These effects were more evident for EHV-5, as there were seven months between the viral load peaks for the groups. The study provides information on how maternal antibody transfer affects γEHV shedding and antibody production in offspring. It also extends our knowledge on the occurrence of EHV-2 and EHV-5 infection in foals during the first two years of life.


Assuntos
Infecções por Herpesviridae/veterinária , Doenças dos Cavalos/imunologia , Cavalos/imunologia , Imunidade Materno-Adquirida , Carga Viral/imunologia , Animais , Feminino , Gammaherpesvirinae/imunologia , Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Doenças dos Cavalos/virologia , Masculino , Carga Viral/veterinária
2.
Viruses ; 9(11)2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149056

RESUMO

Intrinsic factors of the innate immune system include the apolipoprotein B editing enzyme catalytic polypeptide-like 3 (APOBEC3) protein family. APOBEC3 inhibits replication of different virus families by cytosine deamination of viral DNA and a not fully characterized cytosine deamination-independent mechanism. Sheep are susceptible to small ruminant lentivirus (SRLVs) infection and contain three APOBEC3 genes encoding four proteins (A3Z1, Z2, Z3 and Z2-Z3) with yet not deeply described antiviral properties. Using sheep blood monocytes and in vitro-derived macrophages, we found that A3Z1 expression is associated with lower viral replication in this cellular type. A3Z1 transcripts may also contain spliced variants (A3Z1Tr) lacking the cytidine deaminase motif. A3Z1 exogenous expression in fully permissive fibroblast-like cells restricted SRLVs infection while A3Z1Tr allowed infection. A3Z1Tr was induced after SRLVs infection or stimulation of blood-derived macrophages with interferon gamma (IFN-γ). Interaction between truncated isoform and native A3Z1 protein was detected as well as incorporation of both proteins into virions. A3Z1 and A3Z1Tr interacted with SRLVs Vif, but this interaction was not associated with degradative properties. Similar A3Z1 truncated isoforms were also present in human and monkey cells suggesting a conserved alternative splicing regulation in primates. A3Z1-mediated retroviral restriction could be constrained by different means, including gene expression and specific alternative splicing regulation, leading to truncated protein isoforms lacking a cytidine-deaminase motif.


Assuntos
Citosina Desaminase/genética , Lentivirus/fisiologia , Replicação Viral , Processamento Alternativo/genética , Animais , Citosina Desaminase/química , Citosina Desaminase/metabolismo , Regulação da Expressão Gênica , Haplorrinos , Humanos , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Motivos de Nucleotídeos/genética , Isoformas de Proteínas/genética , Ovinos
3.
Vet Microbiol ; 136(3-4): 326-34, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19147307

RESUMO

Moritella viscosa causes winter ulcer disease in salmonids. The aim of the present work was to isolate and partially characterise an extracellular peptidase from M. viscosa, and to study its role in virulence. The peptidase, termed MvP1, was a 38-kDa metallopeptidase produced in late exponential growth. The optimum temperature for MvP1 was 40 degrees C, but the enzyme was active over a broad range of temperatures. MvP1 was non-lethal to salmon at concentrations up to 0.22microg/g fish, but extracellular products were lethal to salmon. MvP1 degraded casein, gelatin and collagen from lumpfish skin. It caused considerable tissue necrosis and hemorrhages at the site of injection, and affected cell-cell adhesions in EPC and BF-2 cell lines, but was not highly cytotoxic. The peptidase partially degraded fish IgM heavy chain but was non-hemolytic. The mvp1 gene was sequenced and encoded a 734-aa polypeptide containing a signal sequence, an N-terminal propeptide, a mature peptidase domain and a C-terminal propeptide. The MvP1 propeptide undergoes both N-terminal and C-terminal processing and different C-terminal processing results in the formation of several active isoforms of the mature peptidase. The catalytic domain showed highest sequence similarity with several vibriolysins (EC 3.4.24.25) originating from Pseudoalteromonas strains, showing up to 80% aa identity. The results indicate that MvP1 is a previously unknown vibriolysin that might affect M. viscosa virulence by aiding in the invasion and dissemination of the bacterium in its host, by causing tissue destruction.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Metaloendopeptidases/isolamento & purificação , Moritella/enzimologia , Salmonidae , Sequência de Aminoácidos , Animais , Sequência de Bases , Eletroforese em Gel Bidimensional/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Imunoglobulina M/metabolismo , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Moritella/genética , Moritella/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação , Fatores de Virulência/metabolismo
4.
J Bacteriol ; 191(1): 403-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18952802

RESUMO

Infections by the bacterium Aeromonas salmonicida subsp. achromogenes cause significant disease in a number of fish species. In this study, we showed that AsaP1, a toxic 19-kDa metallopeptidase produced by A. salmonicida subsp. achromogenes, belongs to the group of extracellular peptidases (Aeromonas type) (MEROPS ID M35.003) of the deuterolysin family of zinc-dependent aspzincin endopeptidases. The structural gene of AsaP1 was sequenced and found to be highly conserved among gram-negative bacteria. An isogenic Delta asaP1 A. salmonicida subsp. achromogenes strain was constructed, and its ability to infect fish was compared with that of the wild-type (wt) strain. The Delta asaP1 strain was found to infect Arctic charr, Atlantic salmon, and Atlantic cod, but its virulence was decreased relative to that of the wt strain. The 50% lethal dose of the AsaP1 mutant was 10-fold higher in charr and 5-fold higher in salmon than that of the wt strain. The pathology induced by the AsaP1-deficient strain was also different from that of the wt strain. Furthermore, the mutant established significant bacterial colonization in all observed organs without any signs of a host response in the infected tissue. AsaP1 is therefore the first member of the M35 family that has been shown to be a bacterial virulence factor.


Assuntos
Aeromonas salmonicida/enzimologia , Aeromonas salmonicida/genética , Proteínas de Bactérias/genética , Metaloproteases/genética , Peptídeo Hidrolases/genética , Proteínas Proto-Oncogênicas c-crk/genética , Virulência/genética , Aeromonas salmonicida/patogenicidade , Animais , Primers do DNA , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Biblioteca Gênica , Metaloproteases/química , Plasmídeos , Salmo salar/microbiologia , Fatores de Virulência/genética , Domínios de Homologia de src
5.
J Gen Virol ; 89(Pt 3): 716-721, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18272763

RESUMO

We have shown previously that a type-specific neutralization domain is located within a 39 aa sequence in the fourth variable domain of gp135 in visna/maedi virus. We now show that neutralizing antibodies detected early in infection are directed to this epitope, suggesting an immunodominant nature of this domain. Ten antigenic variants were previously analysed for mutations in this region, and all but one were found to be mutated. To assess the importance of these mutations in replication and neutralization, we reconstructed several of the mutations in an infectious molecular clone and tested the resulting viruses for neutralization phenotype and replication. Mutation of a conserved cysteine was shown to alter the neutralization epitope, whilst the replication kinetics in macrophages were unchanged. Mutations modulating potential glycosylation sites were found in seven of the ten antigenic variants. A frequently occurring mutation, removing a potential glycosylation site, had no effect on its own on the neutralization phenotype of the virus. However, adding an extra potential glycosylation site in the region resulted in antigenic escape. The results indicate that the conserved cysteine plays a role in the structure of the epitope and that glycosylation may shield the principal neutralization site.


Assuntos
Anticorpos Antivirais/imunologia , Cisteína/química , Mutação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vírus Visna-Maedi/genética , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Células Cultivadas , Plexo Corióideo/citologia , Plexo Corióideo/virologia , Glicosilação , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Dados de Sequência Molecular , Testes de Neutralização , Pneumonia Intersticial Progressiva dos Ovinos/imunologia , Pneumonia Intersticial Progressiva dos Ovinos/virologia , Ovinos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Vírus Visna-Maedi/imunologia
6.
PLoS One ; 2(9): e893, 2007 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-17849022

RESUMO

The human APOBEC3G protein is an innate anti-viral factor that can dominantly inhibit the replication of some endogenous and exogenous retroviruses. The prospects of purposefully harnessing such an anti-viral defense are under investigation. Here, long-term co-culture experiments were used to show that porcine endogenous retrovirus (PERV) transmission from pig to human cells is reduced to nearly undetectable levels by expressing human APOBEC3G in virus-producing pig kidney cells. Inhibition occurred by a deamination-independent mechanism, likely after particle production but before the virus could immortalize by integration into human genomic DNA. PERV inhibition did not require the DNA cytosine deaminase activity of APOBEC3G and, correspondingly, APOBEC3G-attributable hypermutations were not detected. In contrast, over-expression of the sole endogenous APOBEC3 protein of pigs failed to interfere significantly with PERV transmission. Together, these data constitute the first proof-of-principle demonstration that APOBEC3 proteins can be used to fortify the innate anti-viral defenses of cells to prevent the zoonotic transmission of an endogenous retrovirus. These studies suggest that human APOBEC3G-transgenic pigs will provide safer, PERV-less xenotransplantation resources and that analogous cross-species APOBEC3-dependent restriction strategies may be useful for thwarting other endogenous as well as exogenous retrovirus infections.


Assuntos
Citidina Desaminase/fisiologia , Retrovirus Endógenos/patogenicidade , Zoonoses , Desaminase APOBEC-3G , Animais , Sequência de Bases , Transformação Celular Viral , Técnicas de Cocultura , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Primers do DNA , Variação Genética , Humanos , Reação em Cadeia da Polimerase , Frações Subcelulares/metabolismo , Suínos
7.
J Virol Methods ; 146(1-2): 363-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17675253

RESUMO

There are very few previous reports of expression of native full-length maedi visna virus (MVV) Env gp150 protein in the literature. Therefore the use of different plasmid and viral expression vectors to obtain full-length gp150 was investigated. A mammalian expression plasmid, pN3-Env, was constructed containing the MVV env gene encoding the precursor protein gp150 Env. The functionality of the recombinant plasmid was tested for expression in HEK293 cells. A recombinant modified vaccinia Ankara virus, MVA-Env, with expression detected in avian cells was also made. The expression of the MVV gp150 Env precursor protein was shown for the first time upon transfection of the eukaryotic HEK293 cells by the pN3-Env plasmid DNA as demonstrated by Western blot analysis. These plasmid or viral expression vectors are of potential use in MVV vaccines.


Assuntos
Produtos do Gene env/biossíntese , Genes env , Vetores Genéticos , Precursores de Proteínas/biossíntese , Vírus Visna-Maedi/genética , Animais , Linhagem Celular , Produtos do Gene env/genética , Humanos , Plasmídeos , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusão/biossíntese , Transfecção , Vacinas de DNA , Vacinas Virais , Visna/virologia , Vírus Visna-Maedi/imunologia
8.
Nucleic Acids Res ; 34(19): 5683-94, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17038330

RESUMO

The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable.


Assuntos
Artiodáctilos/genética , Citosina Desaminase/química , Evolução Molecular , Retroviridae/genética , Sequência de Aminoácidos , Animais , Catálise , Bovinos , Citoplasma/enzimologia , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Desaminação , Produtos do Gene vif/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ovinos/genética , Suínos/genética , Zinco/química
9.
J Virol ; 79(24): 15038-42, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306574

RESUMO

Maedi-visna virus (MVV) is a lentivirus of sheep sharing several key features with the primate lentiviruses. The virus causes slowly progressive diseases, mainly in the lungs and the central nervous system of sheep. Here, we investigate the molecular basis for the differential growth phenotypes of two MVV isolates. One of the isolates, KV1772, replicates well in a number of cell lines and is highly pathogenic in sheep. The second isolate, KS1, no longer grows on macrophages or causes disease. The two virus isolates differ by 129 nucleotide substitutions and two deletions of 3 and 15 nucleotides in the env gene. To determine the molecular nature of the lesions responsible for the restrictive growth phenotype, chimeric viruses were constructed and used to map the phenotype. An L120R mutation in the CA domain, together with a P205S mutation in Vif (but neither alone), could fully convert KV1772 to the restrictive growth phenotype. These results suggest a functional interaction between CA and Vif in MVV replication, a property that may relate to the innate antiretroviral defense mechanisms in sheep.


Assuntos
Produtos do Gene vif/fisiologia , Macrófagos/virologia , Vírus Visna-Maedi/fisiologia , Animais , DNA Viral/análise , Produtos do Gene vif/genética , Genoma Viral , Mutação , Ovinos , Doenças dos Ovinos/virologia , Replicação Viral , Vírus Visna-Maedi/patogenicidade
10.
Virus Genes ; 27(1): 5-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12913353

RESUMO

Frequent recombination occurs during replication in all retroviruses examined. This increases the genetic variation in the retroviral population and may be of importance in the evolution of the virus. Maedi-visna virus (MVV), a retrovirus of sheep, has a highly variable envelope gene. In a previous experiment, 20 sheep were infected with an uncloned strain of MVV and virus was isolated at regular intervals for 7 years. We sequenced the envelope genes of a number of these strains and found evidence for recombination that may have contributed to the observed high frequency of antigenic variants.


Assuntos
Genes env , Recombinação Genética , Vírus Visna-Maedi/genética , Visna/virologia , Animais , Variação Antigênica , Sequência de Bases , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Ovinos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA