Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1947, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431630

RESUMO

Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.


Assuntos
Endometriose , Proteínas de Neoplasias , Receptores de Esteroides , Animais , Feminino , Humanos , Camundongos , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Proteínas de Neoplasias/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Esteroides/metabolismo
2.
Cell Tissue Res ; 366(1): 219-30, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27221279

RESUMO

Granulosa cell proliferation and differentiation are key developmental steps involved in the formation of the dominant follicle eligible for ovulation. This process is, in turn, regulated by spatiotemporally emerging molecular events. MicroRNAs (miRNAs) are one of the molecular signatures believed to regulate granulosa cell function by fine-tuning gene expression. Previously, we showed that the miR-17-92 cluster was differentially expressed in granulosa cells from subordinate and dominant follicles at day 19 of the estrous cycle. However, the role of this miRNA cluster in bovine follicular cell function is not known. Therefore, in the present study, we investigate the role of the miR-17-92 cluster in granulosa cell function by using an in vitro model. Target prediction and luciferase assay analysis revealed that the miR-17-92 cluster coordinately regulated the PTEN and BMPR2 genes. Overexpression of the miR-17-92 cluster by using a mimic promoted granulosa cell proliferation and reduced the proportion of differentiated cells. However, cluster inhibition resulted in decreased proliferation and increased differentiation in granulosa cells. This was further supported by expression analysis of marker genes of proliferation and differentiation. The role of the miR-17-92 cluster was cross-validated by selective knockdown of its target genes by the short interfering RNA technique. Suppression of the PTEN and BMPR2 genes revealed similar phenotypic and molecular alterations as observed when the granulosa cells were transfected with the miR-17-92 cluster mimic. Thus, the miR-17-92 cluster is involved in granulosa cell proliferation and differentiation by coordinately targeting the PTEN and BMPR2 genes.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Diferenciação Celular/genética , Células da Granulosa/citologia , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , Animais , Sequência de Bases , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Bovinos , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Progesterona/metabolismo , Interferência de RNA , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA