Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125963

RESUMO

The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.


Assuntos
Complexos de Coordenação , Cobre , DNA , Simulação de Acoplamento Molecular , Prodigiosina , Soroalbumina Bovina , Zinco , Prodigiosina/química , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Cobre/química , Cobre/metabolismo , Zinco/metabolismo , Zinco/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Bovinos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sítios de Ligação
2.
Dalton Trans ; 52(14): 4276-4289, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961520

RESUMO

Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium, involved in severe infections associated with cystic fibrosis, pneumonia, burn wounds, ocular diseases, and immunosuppressive illnesses, and is a major cause of intrahospital infections. This bacterium is also one of the most commercially and biotechnologically significant microorganisms, since it can produce valuable biomolecules which represent a rich source of potential drug candidates. On the other hand, metal complexes have been used in medicine for both therapeutic and diagnostic purposes since ancient times. This class of compounds can adopt different geometries and generally have a three-dimensional shape, contributing to their higher clinical success compared to flat purely organic compounds. In the present review article, attention has been devoted to the three natural products derived from P. aeruginosa, namely pyocyanin, pyochelin, and pyoverdine(s) and their ability to form complexes with different metal ions, including iron(II/III), manganese(II/III), gallium(III), chromium(III), nickel(II), copper(II), zinc(II) and cadmium(II). Investigation of the coordination properties of pyocyanin, pyochelin, and pyoverdine(s) towards these metal ions is important because the resulting bacterially derived natural product-metal complex can serve as a model for the study of metal ion metabolism (transport and storage) in living systems and might also be considered as a novel therapeutic agent for potential use in medicine.


Assuntos
Complexos de Coordenação , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Complexos de Coordenação/metabolismo , Piocianina/metabolismo
3.
J Inorg Biochem ; 208: 111089, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32442762

RESUMO

Three novel Zn(II) complexes, [ZnCl2(qz)2] (1), [ZnCl2(1,5-naph)]n (2) and [ZnCl2(4,7-phen)2] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl2 and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions. In agar disc-diffusion assay, complexes 1-3 manifested good inhibitory activity against two investigated Candida strains (C. albicans and C. parapsilosis), while not inducing toxic effects on the healthy human fibroblast cell line (MRC-5). This activity was not fungicidal, as revealed by the broth microdilution assay, however complex 3 showed the ability to modulate Candida hyphae formation, which is an important process during infection and showed significant synergistic effect with clinically used antifungal polyene nystatin.


Assuntos
Antifúngicos , Candida albicans/crescimento & desenvolvimento , Candida parapsilosis/crescimento & desenvolvimento , Complexos de Coordenação , Compostos Heterocíclicos , Nistatina , Zinco , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/agonistas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Sinergismo Farmacológico , Compostos Heterocíclicos/agonistas , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Nistatina/agonistas , Nistatina/química , Nistatina/farmacologia , Zinco/agonistas , Zinco/química , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA