Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 30(5): 958-73, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15525996

RESUMO

To characterize the anticonvulsant effects and types of interactions exerted by mixtures of vigabatrin (VGB) and conventional antiepileptic drugs (valproate (VPA), ethosuximide (ESM), phenobarbital (PB), and clonazepam (CZP)) in pentylenetetrazole (PTZ)-induced seizures in mice, the isobolographic analysis for three fixed-ratio combinations of 1 : 3, 1 : 1, and 3 : 1 was used. The adverse-effect profile of the combinations tested, at the doses corresponding to their median effective doses (ED(50)) at the fixed-ratio of 1 : 1 against PTZ-induced seizures, was determined by the chimney (motor performance), step-through passive avoidance (long-term memory), pain threshold (pain sensitivity), and Y-maze (general explorative locomotor activity) tests in mice. Additionally, the observed isobolographic interactions were verified in terms of a pharmacokinetic interaction existence. VGB combined with PB or ESM exerted supra-additive (synergistic) interactions against the clonic phase of PTZ-induced seizures, which was associated with the increment of PB or ESM concentrations in the brains of examined animals. The remaining combinations tested (ie VGB+VPA and VGB+CZP) occurred additive in the PTZ test, which was associated with no significant changes in the brain concentrations of VPA and CZP. None of the examined combinations exerted motor impairment in the chimney test in mice. In the standard variant of passive avoidance task (current of 0.6 mA; 2 s of stimulus duration), the combinations of VGB+CZP and VGB+VPA significantly affected long-term memory in mice. Moreover, VGB in a dose-dependent manner lengthened the latency to the first pain reaction in the pain threshold test in mice. The modified variant of step-through passive avoidance task (current of 0.6 mA; stimulus duration based on the latency from the pain threshold test) revealed no significant changes in the long-term memory of animals for the combinations of VGB+VPA and VGB+CZP; so the observed effects in the standard variant of passive avoidance task were a result of the antinociceptive effects produced by VGB. In the Y-maze test, VGB also, in a dose-dependent manner, increased the general explorative locomotor activity of the animals tested. Similarly, the total number of arm entries in the Y-maze was significantly increased for the combinations of VGB+CZP and VGB+ESM, but not for VGB+PB and VGB+VPA. The application of VGB in combination with PB, ESM, CZP, and VPA suppressed the clonic phase of PTZ-induced seizures, having no harmful or deleterious effects on behavioral functioning of the animals tested, which might be advantageous in further clinical practice.


Assuntos
Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Convulsivantes/farmacologia , Pentilenotetrazol/antagonistas & inibidores , Pentilenotetrazol/farmacologia , Convulsões/prevenção & controle , Vigabatrina/farmacologia , Animais , Anticonvulsivantes/farmacocinética , Aprendizagem da Esquiva/efeitos dos fármacos , Convulsivantes/farmacocinética , Escuridão , Luz , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Pentilenotetrazol/farmacocinética , Desempenho Psicomotor/efeitos dos fármacos , Vigabatrina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA