Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Commun Biol ; 5(1): 47, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022507

RESUMO

Lysosomal membrane permeabilization (LMP) and cathepsin release typifies lysosome-dependent cell death (LDCD). However, LMP occurs in most regulated cell death programs suggesting LDCD is not an independent cell death pathway, but is conscripted to facilitate the final cellular demise by other cell death routines. Previously, we demonstrated that Caenorhabditis elegans (C. elegans) null for a cysteine protease inhibitor, srp-6, undergo a specific LDCD pathway characterized by LMP and cathepsin-dependent cytoplasmic proteolysis. We designated this cell death routine, lysoptosis, to distinguish it from other pathways employing LMP. In this study, mouse and human epithelial cells lacking srp-6 homologues, mSerpinb3a and SERPINB3, respectively, demonstrated a lysoptosis phenotype distinct from other cell death pathways. Like in C. elegans, this pathway depended on LMP and released cathepsins, predominantly cathepsin L. These studies suggested that lysoptosis is an evolutionarily-conserved eukaryotic LDCD that predominates in the absence of neutralizing endogenous inhibitors.


Assuntos
Antígenos de Neoplasias/genética , Morte Celular , Células Epiteliais/fisiologia , Serpinas/genética , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Serpinas/metabolismo
2.
Commun Biol ; 5(1): 46, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022555

RESUMO

The endogenous lysosomal cysteine protease inhibitor SERPINB3 (squamous cell carcinoma antigen 1, SCCA1) is elevated in patients with cervical cancer and other malignancies. High serum SERPINB3 is prognostic for recurrence and death following chemoradiation therapy. Cervical cancer cells genetically lacking SERPINB3 are more sensitive to ionizing radiation (IR), suggesting this protease inhibitor plays a role in therapeutic response. Here we demonstrate that SERPINB3-deficient cells have enhanced sensitivity to IR-induced cell death. Knock out of SERPINB3 sensitizes cells to a greater extent than cisplatin, the current standard of care. IR in SERPINB3 deficient cervical carcinoma cells induces predominantly necrotic cell death, with biochemical and cellular features of lysoptosis. Rescue with wild-type SERPINB3 or a reactive site loop mutant indicates that protease inhibitory activity is required to protect cervical tumor cells from radiation-induced death. Transcriptomics analysis of primary cervix tumor samples and genetic knock out demonstrates a role for the lysosomal protease cathepsin L in radiation-induced cell death in SERPINB3 knock-out cells. These data support targeting of SERPINB3 and lysoptosis to treat radioresistant cervical cancers.


Assuntos
Antígenos de Neoplasias/genética , Catepsina L/antagonistas & inibidores , Morte Celular , Radiação Ionizante , Serpinas/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Células Neoplásicas Circulantes/efeitos dos fármacos , Serpinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 10(1): 19450, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173155

RESUMO

Extracellular RNAs (exRNAs) have attracted great attention due to their essential role in cell-to-cell communication as well as their potential as non-invasive disease biomarkers. However, at present, there is no consensus on the best method to profile exRNA expression, which leads to significant variability across studies. To address this issue, we established an experimental pipeline for comprehensive profiling of small exRNAs isolated from cell culture. By evaluating six RNA extraction protocols, we developed an improved method for robust recovery of vesicle-bound exRNAs. With this method, we performed small RNA sequencing of exosomes (EXOs), microvesicles (MVs) and source cells from 14 cancer cell lines. Compared to cells, EXOs and MVs were similarly enriched in tRNAs and rRNAs, but depleted in snoRNAs. By miRNA profiling analysis, we identified a subset of miRNAs, most noticeably miR-122-5p, that were significantly over-represented in EXOs and MVs across all 14 cell lines. In addition, we also identified a subset of EXO miRNAs associated with cancer type or human papillomavirus (HPV) status, suggesting their potential roles in HPV-induced cancers. In summary, our work has laid a solid foundation for further standardization on exRNA analysis across various cellular systems.


Assuntos
Vesículas Extracelulares/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Neoplasias/genética , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Alphapapillomavirus/genética , Alphapapillomavirus/fisiologia , Linhagem Celular Tumoral , Exossomos/genética , Células HeLa , Humanos , Neoplasias/patologia , Neoplasias/virologia , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/genética
4.
J Cell Biol ; 213(2): 201-11, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27091448

RESUMO

Transposable elements (TEs) are silenced in germ cells by a mechanism in which PIWI proteins generate and use PIWI-interacting ribonucleic acid (piRNA) to repress expression of TE genes. piRNA biogenesis occurs by an amplification cycle in microscopic organelles called nuage granules, which are localized to the outer face of the nuclear envelope. One cofactor required for amplification is the helicase Spindle-E (Spn-E). We found that the Spn-E protein physically associates with the Tudor domain protein Qin and the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3). Spn-E and Qin proteins are mutually dependent for their exit from nuage granules, whereas Spn-E and both Aub and Ago3 are mutually dependent for their entry or retention in nuage. The result is a dynamic cycling of Spn-E and its associated factors in and out of nuage granules. This implies that nuage granules can be considered to be hubs for active, mobile, and transient complexes. We suggest that this is in some way coupled with the execution of the piRNA amplification cycle.


Assuntos
Proteínas Argonautas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Transporte Biológico , Elementos de DNA Transponíveis/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Biológicos , Dinâmica não Linear , Fatores de Iniciação de Peptídeos/metabolismo , Análise de Regressão , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA