Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216259

RESUMO

Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through ß-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Insuficiência Cardíaca/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia
2.
Eur J Pharmacol ; 812: 174-183, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28697992

RESUMO

We have previously shown that the natriuretic peptide receptor B (NPR-B) agonist C-type natriuretic peptide (CNP) enhances cyclic adenosine 3´,5´-monophosphate (cAMP)-mediated signaling in failing hearts, through cyclic guanosine 3´,5´-monophosphate (cGMP)-mediated phosphodiesterase (PDE) 3 inhibition. As several signaling pathways are importantly changed in failing hearts, it could not be taken for granted that this crosstalk would be the same in non-failing hearts. Thus, we wanted to clarify to which extent this effect of CNP occurred also in non-failing hearts. Inotropic and lusitropic responses were measured in muscle strips and cGMP levels, localized cAMP levels, cAMP-PDE activity and mRNA levels were analyzed in isolated cardiomyocytes from left ventricles of non-failing and failing rat hearts. CNP increased cGMP and enhanced ß1- and ß2-adrenoceptor-mediated inotropic and ß1-adrenoceptor-mediated lusitropic responses, in non-failing and failing hearts. The NPR-A agonist brain natriuretic peptide (BNP) increased cGMP, but did not affect inotropic or lusitropic responses, indicating different compartmentation of cGMP from the two natriuretic peptide receptors. cAMP-PDE activity of PDE3 was concentration-dependently inhibited by cGMP with the same potency and to the same extent in non-failing and failing cardiomyocytes. CNP enhanced ß1-adrenoceptor-induced cAMP increase in living cardiomyocytes in the absence, but not in the presence of a PDE3 inhibitor indicating involvement of PDE3. In summary, CNP sensitizes cAMP-mediated signaling in non-failing as in failing hearts, via NPR-B-mediated increase of cGMP that inhibits the cAMP-PDE activity of PDE3.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Insuficiência Cardíaca/patologia , Peptídeo Natriurético Tipo C/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Insuficiência Cardíaca/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
3.
PLoS One ; 10(3): e0115547, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738589

RESUMO

AIMS: We recently published that the positive inotropic response (PIR) to levosimendan can be fully accounted for by phosphodiesterase (PDE) inhibition in both failing human heart and normal rat heart. To determine if the PIR of the active metabolite OR-1896, an important mediator of the long-term clinical effects of levosimendan, also results from PDE3 inhibition, we compared the effects of OR-1896, a representative Ca2+ sensitizer EMD57033 (EMD), levosimendan and other PDE inhibitors. METHODS: Contractile force was measured in rat ventricular strips. PDE assay was conducted on rat ventricular homogenate. cAMP was measured using RII_epac FRET-based sensors. RESULTS: OR-1896 evoked a maximum PIR of 33 ± 10% above basal at 1 µM. This response was amplified in the presence of the PDE4 inhibitor rolipram (89 ± 14%) and absent in the presence of the PDE3 inhibitors cilostamide (0.5 ± 5.3%) or milrinone (3.2 ± 4.4%). The PIR was accompanied by a lusitropic response, and both were reversed by muscarinic receptor stimulation with carbachol and absent in the presence of ß-AR blockade with timolol. OR-1896 inhibited PDE activity and increased cAMP levels at concentrations giving PIRs. OR-1896 did not sensitize the concentration-response relationship to extracellular Ca2+. Levosimendan, OR-1896 and EMD all increased the sensitivity to ß-AR stimulation. The combination of either EMD and levosimendan or EMD and OR-1896 further sensitized the response, indicating at least two different mechanisms responsible for the sensitization. Only EMD sensitized the α1-AR response. CONCLUSION: The observed PIR to OR-1896 in rat ventricular strips is mediated through PDE3 inhibition, enhancing cAMP-mediated effects. These results further reinforce our previous finding that Ca2+ sensitization does not play a significant role in the inotropic (and lusitropic) effect of levosimendan, nor of its main metabolite OR-1896.


Assuntos
Acetamidas/farmacologia , Cardiotônicos/farmacologia , Miocárdio/enzimologia , Inibidores da Fosfodiesterase 3/farmacologia , Piridazinas/farmacologia , Animais , Cálcio/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Masculino , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos Wistar
4.
ACS Chem Neurosci ; 6(7): 1206-18, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25706089

RESUMO

The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Clozapina/farmacologia , Proteínas/metabolismo , Receptores de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Adenilil Ciclases/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Modelos Moleculares , Mutação , Olanzapina , Ensaio Radioligante , Receptores de Serotonina/genética , Transfecção
6.
FASEB J ; 28(5): 2293-305, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500924

RESUMO

Frizzleds (FZDs) are classified as G-protein-coupling receptors, but how signals are initiated and specified through heterotrimeric G proteins is unknown. FZD6 regulates convergent extension movements, and its C-terminal Arg511Cys mutation causes nail dysplasia in humans. We investigated the functional relationship between FZD6, Disheveled (DVL), and heterotrimeric G proteins. Live cell imaging combined with fluorescence recovery after photobleaching (FRAP) revealed that inactive human FZD6 precouples to Gαi1 and Gαq but not to GαoA,Gαs, and Gα12 proteins. G-protein coupling is measured as a 10-20% reduction in the mobile fraction of fluorescently tagged G proteins on chemical receptor surface cross-linking. The FZD6 Arg511Cys mutation is incapable of G-protein precoupling, even though it still binds DVL. Using both FRAP and Förster resonance energy transfer (FRET) technology, we showed that the FZD6-Gαi1 and FZD-Gαq complexes dissociate on WNT-5A stimulation. Most important, G-protein precoupling of FZD6 and WNT-5A-induced signaling to extracellular signal-regulated kinase1/2 were impaired by DVL knockdown or overexpression, arguing for a strict dependence of FZD6-G-protein coupling on DVL levels and identifying DVL as a master regulator of FZD/G-protein signaling. In summary, we propose a mechanistic connection between DVL and G proteins integrating WNT, FZD, G-protein, and DVL function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores Frizzled/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fosfoproteínas/metabolismo , Membrana Celular/metabolismo , Proteínas Desgrenhadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a
7.
Eur J Immunol ; 38(11): 3208-18, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18991294

RESUMO

Here, we examined the functional involvement of heterotrimeric G-proteins in TCR-induced immune responses. TCR/CD3 crosslinking resulted in activation of both Galphaq and Galphas, but not Galphai-2. Targeting of Galphas, Galphai-2 and Galphaq using siRNA demonstrated a specific role of Galphaq in TCR signaling. Jurkat TAg T cells with Galphaq knockdown displayed reduced activation of Lck and LAT phosphorylation, but paradoxically showed sustained ERK1/2 phosphorylation and increased NFAT-AP-1-reporter activity implicating Galphaq in the negative control of downstream signaling and IL-2-promoter activity. Primary T cells isolated from Galphaq-deficient mice had a similar TCR signaling response with reduced proximal LAT phosphorylation, sustained ERK1/2 phosphorylation and augmented immune responses including increased secretion of IL-2, IL-5, IL-12 and TNF-alpha. The effects on NFAT-AP-1-reporter activity were sensitive to the Src family kinase inhibitor PP2 and were reversed by transient expression of constitutively active Lck. Furthermore, expression of constitutively active Galphaq Q209L elevated Lck activity and Zap-70 phosphorylation. Together these data argue for a role of Galphaq in the fine-tuning of proximal TCR signals at the level of Lck and a negative regulatory role of Galphaq in transcriptional activation of cytokine responses.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/fisiologia , Citocinas/biossíntese , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Humanos , Células Jurkat , Fatores de Transcrição NFATC/fisiologia , Linfócitos T/fisiologia , Fator de Transcrição AP-1/fisiologia
8.
Eur J Pharmacol ; 532(1-2): 1-10, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16487959

RESUMO

Previously, we demonstrated that human serotonin (5-HT) 5-HT(7) receptors display marked constitutive activity. Here, we tested if the constitutive activation of adenylyl cyclase by 5-HT(7) receptors influenced both the desensitization properties of transfected 5-HT(7) receptors and the ability of endogenous G(s)-coupled receptors to activate adenylyl cyclase. Using membranes from stably transfected HEK293 cells expressing the recombinant human 5-HT(7) receptor splice variants (5-HT(7(a)), 5-HT(7(b)) and 5-HT(7(d))), we compared the effects of 1-h or 24-h preincubation of the agonist 5-HT, partial inverse agonists mesulergine and SB269970, and full inverse agonists clozapine and methiothepin on subsequent activation of adenylyl cyclase by both 5-HT through transfected 5-HT(7) receptors and the endogenous G(s)-coupled beta-adrenoceptors and prostaglandin receptors of HEK293 cells. The data show that stable expression of 5-HT(7) receptors is sufficient to attenuate adenylyl cyclase activation by endogenous G(s)-coupled receptors. Interestingly, preincubation with inverse agonists not only failed to result in the predicted resensitization of all receptor mediated adenylyl cyclase activation, but some inverse agonists further attenuated (desensitized) beta-adrenoceptor and prostaglandin-stimulated adenylyl cyclase activation similar to long-term agonist exposure by 5-HT. These effects were not correlated with inverse agonist efficacy, were not accompanied by receptor down-regulation and appear to be mediated by a protein kinase A (PKA) independent mechanism. It is concluded that the human 5-HT(7) receptor mediates heterologous desensitization of endogenous G(s)-coupled receptors through an unknown and potentially novel mechanism.


Assuntos
Receptores de Serotonina/fisiologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Adenilil Ciclases/metabolismo , Processamento Alternativo/genética , Ligação Competitiva/efeitos dos fármacos , Linhagem Celular , Membrana Celular/metabolismo , Clozapina/farmacologia , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Ergolinas/farmacologia , Expressão Gênica , Humanos , Isoproterenol/farmacologia , Isoquinolinas/farmacologia , Metiotepina/farmacologia , Análise Multivariada , Fenóis/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Ensaio Radioligante , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/análogos & derivados , Serotonina/metabolismo , Serotonina/farmacologia , Sulfonamidas/farmacologia , Fatores de Tempo , Trítio
9.
Cardiovasc Res ; 65(4): 869-78, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15721867

RESUMO

BACKGROUND: Current pharmacological treatment of congestive heart failure (CHF) addresses changes in neurohumoral stimulation or cardiac responsiveness to such stimulation. Yet, undiscovered neurohumoral changes, adaptive or maladaptive, may occur in CHF and suggest novel pharmacological treatment. Serotonin [5-hydroxytryptamine (5-HT)] enhances contractility and causes arrhythmias through 5-HT(4) receptors in human atrium and ventricle but not through rat ventricular 5-HT(4) receptors. OBJECTIVE: We investigated whether CHF could induce ventricular responsiveness to serotonin. METHODS: Postinfarction CHF was induced in male Wistar rats by coronary artery ligation. Contractility was measured in left ventricular papillary muscles 6 weeks after infarction. Messenger RNA was quantified by RT-PCR and cAMP by RIA. RESULTS: Serotonin caused positive inotropic (-logEC(50)=7.5) and lusitropic effects in CHF but not Sham papillary muscles. The inotropic effect of 10 muM serotonin in CHF (31.3+/-2.2%) was of similar size as the effect of 10 muM isoproterenol (34.0+/-1.7%). The effects of serotonin were antagonised by GR113808 (0.5-5 nM), consistent with mediation through 5-HT(4) receptors. This was further supported by positive inotropic effects of the 5-HT(4)-selective partial agonist RS67506. Carbachol blunted the serotonin responses and serotonin increased ventricular and cardiomyocyte cAMP, consistent with coupling to G(s) and adenylyl cyclase. Quantitative RT-PCR revealed fourfold increased 5-HT(4(b)) mRNA expression in CHF vs. Sham ventricles. CONCLUSION: Functional ventricular 5-HT(4) receptors are induced by myocardial infarction and CHF of the rat heart. We propose that they are a model for ventricular 5-HT(4) receptors of human failing heart and may play a pathophysiological role in heart failure.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Receptores 5-HT4 de Serotonina/fisiologia , Serotonina/farmacologia , Animais , AMP Cíclico/metabolismo , Insuficiência Cardíaca/etiologia , Indóis/farmacologia , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiopatologia , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores 5-HT4 de Serotonina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA