Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 75(2): 165-75, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12137762

RESUMO

Human lenses appear to become coloured with age primarily due to the covalent binding of UV filter compounds to lens proteins. These crystallin modifications result from the inherent instability of the kynurenine UV filters. Here we investigate this decomposition, the role this may have in the formation of other primate UV filters, and the interaction of the intermediates (alpha,beta-ketoalkenes) with lens components. The UV filters kynurenine, 3-hydroxykynurenine and 3-hydroxykynurenine glucoside were incubated at neutral pH in the presence or absence of NADH or NADPH. The three UV filters underwent spontaneous deamination, such that at pH 7 less than half of the starting materials (kynurenine (42%), 3-hydroxykynurenine glucoside (30%) and 3-hydroxykynurenine (21%)) remained after 7 days. In the presence of NAD(P)H, the double bond of the UV filter-derived deamination compounds, were reduced. Deamination of 3-hydroxykynurenine glucoside, followed by reduction with NAD(P)H, could thus account for the formation of the major lens UV filter 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid glucoside. beta-Benzoylacrylic acid, which possesses the same alpha,beta-ketoalkene sidechain as the deaminated kynurenine UV filters, underwent Michael addition with glutathione, was reduced (hydrogenated) by NAD(P)H, however was unreactive with ascorbate. Surprisingly, at pH 7 the UV filter-derived alpha,beta-ketoalkene intermediates, do not readily undergo intramolecular cyclization. This feature makes the double bond more available for reaction with protein nucleophilic residues and other lens components such as glutathione. On the basis of these data it is likely that glutathione and NAD(P)H, but not ascorbate, protect proteins in the lens from modification by UV filters.


Assuntos
Cristalino/fisiologia , Raios Ultravioleta/efeitos adversos , Acrilatos/metabolismo , Benzoatos/metabolismo , Cristalinas/metabolismo , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Glutationa/metabolismo , Humanos , Concentração de Íons de Hidrogênio , NAD/metabolismo
2.
Exp Eye Res ; 74(4): 503-11, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12076094

RESUMO

Age-dependent human lens colouration and fluorescence may stem primarily from the covalent binding of UV filters to crystallins. The tendency of the kynurenine (Kyn) UV filters to deaminate at neutral pH, with the generation of reactive alpha,beta-ketoalkenes, underlies this phenomenon. In this study the authors examined the ability of small molecular weight antioxidants, which are known to be present in the lens, to inhibit this process. Crystallins were incubated with Kyn at pH 7 in the presence of glutathione (GSH), ascorbate or NADH. Ascorbate, even at high (15 m M) levels, was not found to significantly retard the time-dependent covalent binding of Kyn to the proteins. GSH, and to a lesser extent NADH, however, had a major impact in preventing this modification. The increase in protein UV absorbance and fluorescence was inhibited by GSH intercepting the reactive ketone intermediate, to form a GSH-Kyn adduct. NADH seemed to protect by both reduction of the reactive ketone intermediate and by competing with Kyn for presumably hydrophobic sites on the crystallins. This may indicate that the covalent attachment of aromatic Kyn molecules could be facilitated by initial hydrophobic interactions. Since GSH is present at far greater concentrations than NADH, these results show that in primate lenses, GSH is the key agent responsible for protecting the crystallins from covalent modification.


Assuntos
Cristalinas/efeitos dos fármacos , Cristalinas/metabolismo , Glutationa/farmacologia , Cinurenina/metabolismo , NAD/farmacologia , Animais , Ácido Ascórbico/farmacologia , Bovinos , Concentração de Íons de Hidrogênio , Cinurenina/antagonistas & inibidores , Cristalino/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA