Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Pediatr ; 9: 626261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718300

RESUMO

Objective: This study aims to evaluate outcome after conservative management (no pharmacological/surgical intervention other than fluid restriction, diuretics, or ventilator adjustments) compared with active (pharmacological and/or surgical) treatment for patent ductus arteriosus (PDA) in preterm infants and analyze differences in outcome between randomized controlled trials (RCTs) and cohort studies. Study Design: This is a systematic literature review using PubMed, EMBASE, and Cochrane library. RCTs and cohort studies comparing conservative management with active treatment were included. Meta-analysis was used to compare conservative management with any active (pharmacological and/or surgical), any pharmacological (non-prophylactic and prophylactic), and/or surgical treatment for mortality as primary and major neonatal morbidity as secondary outcome measure. Fixed-effect analysis was used, unless heterogeneity (I 2) was >50%. Outcome is presented as relative risk (RR) with 95% confidence interval. Results: Twelve cohort studies and four RCTs were included, encompassing 41,804 and 720 patients, respectively. In cohort studies, conservative management for PDA was associated with a significantly higher risk for mortality (RR, 1.34 [1.12-1.62]) but a significantly lower risk for bronchopulmonary dysplasia (RR, 0.55 [0.46-0.65]), necrotizing enterocolitis (RR, 0.85 [0.77-0.93]), intraventricular hemorrhage (RR, 0.88 [0.83-0.95]), and retinopathy of prematurity (RR, 0.47 [0.28-0.79]) compared with any active PDA treatment. Meta-analysis of the RCTs revealed no significant differences in outcome between conservative management and active treatment. Conclusion: No differences in mortality or morbidity for conservative management compared with active treatment regimens were observed in RCTs. Findings from cohort studies mainly highlight the lack of high-quality evidence for conservative management for PDA in preterm infants.

2.
Front Pediatr ; 9: 626262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634058

RESUMO

Context: There is an ongoing debate on the optimal management of patent ductus arteriosus (PDA) in preterm infants. Identifying subgroup of infants who would benefit from pharmacological treatment might help. Objective: To investigate the modulating effect of the differences in methodological quality, the rate of open-label treatment, and patient characteristics on relevant outcome measures in randomized controlled trials (RCTs). Data Sources: Electronic database search between 1950 and May 2020. Study Selection: RCTs that assessed pharmacological treatment compared to placebo/no treatment. Data Extraction: Data is extracted following the PRISMA guidelines. Outcome measures were failure to ductal closure, surgical ligation, incidence of necrotizing enterocolitis, bronchopulmonary dysplasia, sepsis, periventricular leukomalacia, intraventricular hemorrhage (IVH) grade ≥3, retinopathy of prematurity and mortality. Results: Forty-seven studies were eligible. The incidence of IVH grade ≥3 was lower in the treated infants compared to the placebo/no treatment (RR 0.77, 95% CI 0.64-0.94) and in the subgroups of infants with either a gestational age <28 weeks (RR 0.77, 95% CI 0.61-0.98), a birth weight <1,000 g (RR 0.77, 95% CI 0.61-0.97), or if untargeted treatment with indomethacin was started <24 h after birth (RR 0.70, 95% CI 0.54-0.90). Limitations: Statistical heterogeneity caused by missing data and variable definitions of outcome parameters. Conclusions: Although the quality of evidence is low, this meta-analysis suggests that pharmacological treatment of PDA reduces severe IVH in extremely preterm, extremely low birth weight infants or if treatment with indomethacin was started <24 h after birth. No other beneficial effects of pharmacological treatment were found.

3.
Pediatr Res ; 87(1): 125-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450233

RESUMO

BACKGROUND: Although sedative premedication for endotracheal intubation is considered standard of care, less invasive surfactant administration (LISA) is often performed without sedative premedication. The aim of this study was to assess success rates, technical quality and vital parameters in LISA without sedative premedication. METHODS: Prospective observational study in 86 neonates <32 weeks' gestation. LISA was performed according to a standardized protocol without use of sedative premedication. Outcome measures were success rates of LISA attempts, reasons for failure and quality of technical conditions. In 37 neonates, heart rate and oxygen saturation levels from 20 min before until 30 min after start of LISA were collected. RESULTS: In 48% of LISAs the first attempt failed and in 34% quality of technical conditions was inadequate. The success rate was significantly correlated with quality of technical conditions and experience of the performer. Desaturations <80% occurred in 54% of patients while bradycardia <80/min did not occur. CONCLUSION: This study shows a relatively low success rate of the first attempt of LISA, frequent inadequacy of technical quality and frequent oxygen desaturations. These effects may be improved by the use of sedative premedication.


Assuntos
Laringoscopia , Pulmão/efeitos dos fármacos , Surfactantes Pulmonares/administração & dosagem , Indicadores de Qualidade em Assistência à Saúde , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Biomarcadores/sangue , Peso ao Nascer , Catéteres , Idade Gestacional , Frequência Cardíaca , Humanos , Hipnóticos e Sedativos/uso terapêutico , Lactente Extremamente Prematuro , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Laringoscopia/efeitos adversos , Laringoscopia/instrumentação , Pulmão/fisiopatologia , Oxigênio/sangue , Estudos Prospectivos , Surfactantes Pulmonares/efeitos adversos , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Fatores de Tempo , Falha de Tratamento
4.
J Clin Pharmacol ; 59(10): 1300-1308, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31093992

RESUMO

Although midazolam is a frequently used sedative in neonatal intensive care units, its use in preterm neonates has been off-label. Recently, a new dosing advice for midazolam for sedation on intensive care units has been included in the label (0.03 mg/[kg·h] for preterm neonates <32 weeks and 0.06 mg/[kg·h] for neonates >32 weeks). Concentration-time data of a prospective multicenter study (29 patients, median gestational age 26.7 [range 24.0-31.1 weeks]) were combined with previously published data (26 patients, median gestational age 28.1 [range 26.3-33.6 weeks]), and a population pharmacokinetic model describing the maturation of midazolam pharmacokinetics was developed in NONMEM 7.3. Clearance was 73.7 mL/h for a neonate weighing 1.1 kg and changed nonlinearly with body weight (exponent 1.69). Volume of distribution increased linearly with body weight and was 1.03 L for a neonate weighing 1.1 kg. Simulations of the newly registered dosing show considerable differences in steady-state concentrations in preterm neonates. To reach similar steady-state concentrations of 400 µg/mL (±100 µg/mL), a dose of 0.03 mg/(kg·h) is adequate for neonates ≥1 kg and ≤2 kg but would have to be reduced to 0.02 mg/(kg·h) (-33%) in neonates <1 kg and increased to 0.04 mg/(kg·h) (+33%) in neonates weighing >2 kg and ≤2.5 kg. The impact of the observed differences in exposure is difficult to assess because no target concentrations have yet been defined for midazolam, but the current analysis shows that one should be cautious in giving dosage advice based on historical data with a lack of reliable pharmacokinetic and effect data.


Assuntos
Hipnóticos e Sedativos/farmacocinética , Recém-Nascido Prematuro/metabolismo , Midazolam/farmacocinética , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino
5.
Physiol Meas ; 38(9): 1791-1801, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28671554

RESUMO

OBJECTIVE: Traditional patient monitoring during surgery includes heart rate (HR), blood pressure (BP) and peripheral oxygen saturation. However, their use as predictors for central hypovolemia is limited, which may lead to cerebral hypoperfusion. The aim of this study was to develop a monitoring model that can indicate a decrease in central blood volume (CBV) at an early stage. APPROACH: Twenty-eight healthy subjects (aged 18-50 years) were included. Lower body negative pressure (-50 mmHg) was applied to induce central hypovolemia until the onset of pre-syncope. Ten beat-to-beat and four discrete parameters were measured, normalized, and filtered with a 30 s moving window. Time to pre-syncope was scaled from 100%-0%. A total of 100 neural networks with 5, 10, 15, 20, or 25 neurons in their respective hidden layer were trained by 10, 20, 40, 80, 160, or 320 iterations to predict time to pre-syncope for each subject. The network with the lowest average slope of a fitted line over all subjects was chosen as optimal. MAIN RESULTS: The optimal generalized model consisted of 10 hidden neurons, trained using 80 iterations. The slope of the fitted line on the average prediction was -0.64 (SD 0.35). The model recognizes in 75% of the subjects the need for intervention at >200 s before pre-syncope. SIGNIFICANCE: We developed a neural network based on a set of physiological variables, which indicates a decrease in CBV even in the absence of HR and BP changes. This should allow timely intervention and prevent the development of symptomatic cerebral hypoperfusion.


Assuntos
Volume Sanguíneo , Progressão da Doença , Hipovolemia/fisiopatologia , Aprendizado de Máquina , Monitorização Fisiológica , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Stem Cells Transl Med ; 5(6): 754-63, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27160705

RESUMO

UNLABELLED: Preterm neonates are susceptible to perinatal hypoxic-ischemic brain injury, for which no treatment is available. In a preclinical animal model of hypoxic-ischemic brain injury in ovine fetuses, we have demonstrated the neuroprotective potential of systemically administered mesenchymal stromal cells (MSCs). The mechanism of MSC treatment is unclear but suggested to be paracrine, through secretion of extracellular vesicles (EVs). Therefore, we investigated in this study the protective effects of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in a preclinical model of preterm hypoxic-ischemic brain injury. Ovine fetuses were subjected to global hypoxia-ischemia by transient umbilical cord occlusion, followed by in utero intravenous administration of MSC-EVs. The therapeutic effects of MSC-EV administration were assessed by analysis of electrophysiological parameters and histology of the brain. Systemic administration of MSC-EVs improved brain function by reducing the total number and duration of seizures, and by preserving baroreceptor reflex sensitivity. These functional protections were accompanied by a tendency to prevent hypomyelination. Cerebral inflammation remained unaffected by the MSC-EV treatment. Our data demonstrate that MSC-EV treatment might provide a novel strategy to reduce the neurological sequelae following hypoxic-ischemic injury of the preterm brain. Our study results suggest that a cell-free preparation comprising neuroprotective MSC-EVs could substitute MSCs in the treatment of preterm neonates with hypoxic-ischemic brain injury, thereby circumventing the potential risks of systemic administration of living cells. SIGNIFICANCE: Bone marrow-derived mesenchymal stromal cells (MSCs) show promise in treating hypoxic-ischemic injury of the preterm brain. Study results suggest administration of extracellular vesicles, rather than intact MSCs, is sufficient to exert therapeutic effects and avoids potential concerns associated with administration of living cells. The therapeutic efficacy of systemically administered mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) on hypoxia-ischemia-induced injury was assessed in the preterm ovine brain. Impaired function and structural injury of the fetal brain was improved following global hypoxia-ischemia. A cell-free preparation of MSC-EVs could substitute for the cellular counterpart in the treatment of preterm neonates with hypoxic-ischemic brain injury. This may open new clinical applications for "off-the-shelf" interventions with MSC-EVs.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Hipóxia-Isquemia Encefálica/terapia , Inflamação/terapia , Células-Tronco Mesenquimais/metabolismo , Animais , Encéfalo/fisiopatologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/terapia , Proliferação de Células , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Feto , Humanos , Hipóxia-Isquemia Encefálica/fisiopatologia , Inflamação/fisiopatologia , Células-Tronco Mesenquimais/citologia , Ovinos
7.
J Neuroinflammation ; 12: 241, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26700169

RESUMO

BACKGROUND: Preterm infants are at risk for hypoxic-ischemic encephalopathy. No therapy exists to treat this brain injury and subsequent long-term sequelae. We have previously shown in a well-established pre-clinical model of global hypoxia-ischemia (HI) that mesenchymal stem cells are a promising candidate for the treatment of hypoxic-ischemic brain injury. In the current study, we investigated the neuroprotective capacity of multipotent adult progenitor cells (MAPC®), which are adherent bone marrow-derived cells of an earlier developmental stage than mesenchymal stem cells and exhibiting more potent anti-inflammatory and regenerative properties. METHODS: Instrumented preterm sheep fetuses were subjected to global hypoxia-ischemia by 25 min of umbilical cord occlusion at a gestational age of 106 (term ~147) days. During a 7-day reperfusion period, vital parameters (e.g., blood pressure and heart rate; baroreceptor reflex) and (amplitude-integrated) electroencephalogram were recorded. At the end of the experiment, the preterm brain was studied by histology. RESULTS: Systemic administration of MAPC therapy reduced the number and duration of seizures and prevented decrease in baroreflex sensitivity after global HI. In addition, MAPC cells prevented HI-induced microglial proliferation in the preterm brain. These anti-inflammatory effects were associated with MAPC-induced prevention of hypomyelination after global HI. Besides attenuation of the cerebral inflammatory response, our findings showed that MAPC cells modulated the peripheral splenic inflammatory response, which has been implicated in the etiology of hypoxic-ischemic injury in the preterm brain. CONCLUSIONS: In a pre-clinical animal model MAPC cell therapy improved the functional and structural outcome of the preterm brain after global HI. Future studies should establish the mechanism and long-term therapeutic effects of neuroprotection established by MAPC cells in the developing preterm brain exposed to HI. Our study may form the basis for future clinical trials, which will evaluate whether MAPC therapy is capable of reducing neurological sequelae in preterm infants with hypoxic-ischemic encephalopathy.


Assuntos
Células-Tronco Adultas/transplante , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Nascimento Prematuro , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feto , Ovinos
8.
Mol Cell Pediatr ; 2(1): 4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26542294

RESUMO

BACKGROUND: Term and near-term infants are at high risk of developing brain injury and life-long disability if they have suffered from severe perinatal asphyxia. We hypothesized that propofol administration to the maternal-fetal unit can diminish cerebral injury in term and near-term infant fetuses in states of progressive severe asphyxia. METHODS: Forty-four late preterm lambs underwent total umbilical cord occlusion (UCO) or sham treatment in utero. UCO resulted in global asphyxia and cardiac arrest. After emergency cesarean section under either maternal propofol or isoflurane anesthesia, the fetuses were resuscitated and subsequently anesthetized the same way as their mothers. RESULTS: Asphyctic lambs receiving isoflurane showed a significant increase of total and low-frequency spectral power in bursts indicating seizure activity and more burst-suppression with a marked increase of interburst interval length during UCO. Asphyctic lambs receiving propofol showed less EEG changes. Propofol increased levels of anti-apoptotic B-cell lymphoma-extra large (Bcl-xL) and phosphorylated STAT-3 and reduced the release of cytochrome c from the mitochondria and the protein levels of activated cysteinyl aspartate-specific protease (caspase)-3, -9, and N-methyl-d-aspartate (NMDA) receptor. CONCLUSIONS: Improvement of fetal EEG during and after severe asphyxia could be achieved by propofol treatment of the ovine maternal-fetal unit. The underlying mechanism is probably the reduction of glutamate-induced cytotoxicity by down-regulation of NMDA receptors and an inhibition of the mitochondrial apoptotic pathway.

9.
Exp Neurol ; 250: 293-303, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120465

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is common in preterm infants, but currently no curative therapy is available. Cell-based therapy has a great potential in the treatment of hypoxic-ischemic preterm brain injury. Granulocyte-colony stimulating factor (G-CSF) is known to mobilize endogenous hematopoietic stem cells (HSC) and promotes proliferation of endogenous neural stem cells. On these grounds, we hypothesized that systemic G-CSF would be neuroprotective in a large translational animal model of hypoxic-ischemic injury in the preterm brain. Global hypoxia-ischemia (HI) was induced by transient umbilical cord occlusion in instrumented preterm sheep. G-CSF treatment (100µg/kg intravenously, during five consecutive days) was started one day before the global HI insult to ascertain mobilization of endogenous stem cells within the acute phase after global HI. Mobilization of HSC and neutrophils was studied by flow cytometry. Brain sections were stained for microglia (IBA-1), myelin basic protein (MBP) and myeloperoxidase (MPO) to study microglial proliferation, white matter injury and neutrophil invasion respectively. Electrographic seizure activity was analyzed using amplitude-integrated electroencephalogram (aEEG). G-CSF effectively mobilized CD34-positive HSC in the preterm sheep. In addition, G-CSF caused marked mobilization of neutrophils, but did not influence enhanced invasion of neutrophils into the preterm brain after global HI. Microglial proliferation and hypomyelination following global HI were reduced as a result of G-CSF treatment. G-CSF did not cause a reduction of the electrographic seizure activity after global HI. In conclusion, G-CSF induced mobilization of endogenous stem cells which was associated with modulation of the cerebral inflammatory response and reduced white matter injury in an ovine model of preterm brain injury after global HI. G-CSF treatment did not improve neuronal function as shown by seizure analysis. Our study shows that G-CSF treatment has neuroprotective potential following hypoxic-ischemic injury in the preterm brain.


Assuntos
Encefalite/patologia , Hipóxia Fetal/complicações , Fator Estimulador de Colônias de Granulócitos/farmacologia , Hipóxia-Isquemia Encefálica/complicações , Fármacos Neuroprotetores/farmacologia , Animais , Modelos Animais de Doenças , Eletrocardiografia , Eletroencefalografia , Encefalite/etiologia , Hipóxia Fetal/patologia , Feto , Citometria de Fluxo , Mobilização de Células-Tronco Hematopoéticas , Hipóxia-Isquemia Encefálica/patologia , Imuno-Histoquímica , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Convulsões/etiologia , Ovinos
10.
PLoS One ; 8(8): e73031, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991170

RESUMO

Hypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI) was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 10(6) MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI), in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE.


Assuntos
Encéfalo/embriologia , Hipóxia-Isquemia Encefálica/imunologia , Tolerância Imunológica , Células-Tronco Mesenquimais/imunologia , Linfócitos T/imunologia , Animais , Sequência de Bases , Primers do DNA , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Reação em Cadeia da Polimerase , Convulsões/prevenção & controle , Ovinos
11.
Pediatr Surg Int ; 25(2): 207-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19082830

RESUMO

This article describes five cases of congenital epulis, a rare and benign swelling in the mouth of a newborn, which is not widely known. We present five cases: four cases presented as single pedunculated nodules of the gingiva and in one case two nodules were present. Of all, 50% were located at the maxilla. Excision was performed in four of the five cases and in one case, spontaneous regression was awaited. No recurrence was reported. The characteristic features of congenital epulis are a pedunculated, flesh-pink coloured tumour with a predominant occurrence on the anterior maxillary alveolar ridge in a female newborn. Although the aetiology is unknown, most authors suggest a mesenchymal, rather than an odontogenic, origin. Endogenous hormonal factors might influence growth prenatally. Histological findings include granular cells with eosinophilic cytoplasm and small, eccentric nuclei. Despite the fact that the lesion can be a striking sight, spontaneous regression is possible and can be awaited. Indications for non-radical excision under local anaesthesia are severe upper airway obstruction and interference with feeding technique. In conclusion, we provide clinical and histological information about congenital epulis, so that this entity will be more easily recognised and relevant information given to parents.


Assuntos
Neoplasias Gengivais/cirurgia , Neoplasias Maxilomandibulares/cirurgia , Feminino , Neoplasias Gengivais/congênito , Humanos , Recém-Nascido , Neoplasias Maxilomandibulares/congênito , Remissão Espontânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA