Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 191, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026273

RESUMO

BACKGROUND: The encoding of cell intrinsic drug resistance states in breast cancer reflects the contributions of genomic and non-genomic variations and requires accurate estimation of clonal fitness from co-measurement of transcriptomic and genomic data. Somatic copy number (CN) variation is the dominant mutational mechanism leading to transcriptional variation and notably contributes to platinum chemotherapy resistance cell states. Here, we deploy time series measurements of triple negative breast cancer (TNBC) single-cell transcriptomes, along with co-measured single-cell CN fitness, identifying genomic and transcriptomic mechanisms in drug-associated transcriptional cell states. RESULTS: We present scRNA-seq data (53,641 filtered cells) from serial passaging TNBC patient-derived xenograft (PDX) experiments spanning 2.5 years, matched with genomic single-cell CN data from the same samples. Our findings reveal distinct clonal responses within TNBC tumors exposed to platinum. Clones with high drug fitness undergo clonal sweeps and show subtle transcriptional reversion, while those with weak fitness exhibit dynamic transcription upon drug withdrawal. Pathway analysis highlights convergence on epithelial-mesenchymal transition and cytokine signaling, associated with resistance. Furthermore, pseudotime analysis demonstrates hysteresis in transcriptional reversion, indicating generation of new intermediate transcriptional states upon platinum exposure. CONCLUSIONS: Within a polyclonal tumor, clones with strong genotype-associated fitness under platinum remained fixed, minimizing transcriptional reversion upon drug withdrawal. Conversely, clones with weaker fitness display non-genomic transcriptional plasticity. This suggests CN-associated and CN-independent transcriptional states could both contribute to platinum resistance. The dominance of genomic or non-genomic mechanisms within polyclonal tumors has implications for drug sensitivity, restoration, and re-treatment strategies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Análise de Célula Única , Transcriptoma , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Humanos , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Camundongos , Variações do Número de Cópias de DNA , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética
2.
Nat Commun ; 13(1): 4534, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927228

RESUMO

Assessing tumour gene fitness in physiologically-relevant model systems is challenging due to biological features of in vivo tumour regeneration, including extreme variations in single cell lineage progeny. Here we develop a reproducible, quantitative approach to pooled genetic perturbation in patient-derived xenografts (PDXs), by encoding single cell output from transplanted CRISPR-transduced cells in combination with a Bayesian hierarchical model. We apply this to 181 PDX transplants from 21 breast cancer patients. We show that uncertainty in fitness estimates depends critically on the number of transplant cell clones and the variability in clone sizes. We use a pathway-directed allelic series to characterize Notch signaling, and quantify TP53 / MDM2 drug-gene conditional fitness in outlier patients. We show that fitness outlier identification can be mirrored by pharmacological perturbation. Overall, we demonstrate that the gene fitness landscape in breast PDXs is dominated by inter-patient differences.


Assuntos
Neoplasias da Mama , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Teorema de Bayes , Neoplasias da Mama/genética , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 595(7868): 585-590, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163070

RESUMO

Progress in defining genomic fitness landscapes in cancer, especially those defined by copy number alterations (CNAs), has been impeded by lack of time-series single-cell sampling of polyclonal populations and temporal statistical models1-7. Here we generated 42,000 genomes from multi-year time-series single-cell whole-genome sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new Wright-Fisher population genetics model8,9 to infer clonal fitness, we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness over a larger number of clones associated with distinct CNAs. Furthermore, in TNBC PDX models with mutated TP53, inferred fitness coefficients from CNA-based genotypes accurately forecast experimentally enforced clonal competition dynamics. Drug treatment in three long-term serially passaged TNBC PDXs resulted in cisplatin-resistant clones emerging from low-fitness phylogenetic lineages in the untreated setting. Conversely, high-fitness clones from treatment-naive controls were eradicated, signalling an inversion of the fitness landscape. Finally, upon release of drug, selection pressure dynamics were reversed, indicating a fitness cost of treatment resistance. Together, our findings define clonal fitness linked to both CNA and therapeutic resistance in polyclonal tumours.


Assuntos
Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Células Clonais/patologia , Feminino , Aptidão Genética , Humanos , Camundongos , Modelos Estatísticos , Transplante de Neoplasias , Proteína Supressora de Tumor p53/genética , Sequenciamento Completo do Genoma
4.
PLoS Comput Biol ; 16(9): e1008270, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32966276

RESUMO

We present Epiclomal, a probabilistic clustering method arising from a hierarchical mixture model to simultaneously cluster sparse single-cell DNA methylation data and impute missing values. Using synthetic and published single-cell CpG datasets, we show that Epiclomal outperforms non-probabilistic methods and can handle the inherent missing data characteristic that dominates single-cell CpG genome sequences. Using newly generated single-cell 5mCpG sequencing data, we show that Epiclomal discovers sub-clonal methylation patterns in aneuploid tumour genomes, thus defining epiclones that can match or transcend copy number-determined clonal lineages and opening up an important form of clonal analysis in cancer. Epiclomal is written in R and Python and is available at https://github.com/shahcompbio/Epiclomal.


Assuntos
Metilação de DNA , Análise de Célula Única , Análise por Conglomerados , Ilhas de CpG , Humanos , Probabilidade , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA