Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124381, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838602

RESUMO

Adenosine is one of the building blocks of nucleic acids and other biologically important molecules. Spectroscopic methods have been among the most utilized techniques to study adenosine and its derivatives. However, most of them deal with adenosine in solution. Here, we present the first vibrational circular dichroism (VCD) spectroscopic study of adenosine crystals in solid state. Highly regular arrangement of adenosine molecules in a crystal resulted in a strongly enhanced supramolecular VCD signal originating from long-range coupling of vibrations. The data suggested that adenosine crystals, in contrast to guanosine ones, do not imbibe atmospheric water. Relatively large dimensions of the adenosine crystals resulted in scattering and substantial orientational artifacts affecting the spectra. Several strategies for tackling the artifacts have been proposed and tested. Atypical features in IR absorption spectra of crystalline adenosine (e.g., extremely low absorption in mid-IR spectral range) were observed and attributed to refractive properties of adenosine crystals.

2.
J Phys Chem A ; 111(39): 9714-23, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17784739

RESUMO

The cis-platin binding to the d(CCTGGTCC)*d(GGACCAGG) model DNA octamer was monitored with infrared absorption (IR) and vibrational circular dichroism (VCD) spectroscopies. The spectra were modeled with the aid of density functional computations and a Cartesian coordinate-based transfer of molecular property tensors from smaller DNA fragments. Because of the fragmentation, the tensors could be calculated with a higher precision. Environmental effects, such as the presence of the solvent or the cis-platin ligand, could be included in the modeling. The solvent was modeled by an explicit inclusion of hydrogen-bound water molecules, positions of which were estimated from a molecular dynamics simulation, or by the polarized continuum COSMO model. The B3LYP and BPW91 functionals used for the calculations of the spectral parameters were combined with the relativistic LANL2DZ platinum pseudo-potentials. The simulations reproduced the main IR and VCD DNA spectral features and explained most of the changes observed experimentally upon metal binding. The results confirmed that the influence of the ligand on DNA vibrational properties is quite complex; it originates in the geometry deformation and normal mode coupling pattern changes of the platinated octamer, as well as in local perturbations of the electronic structure and force field of the GC base pairs to which the platinum is bound. Many of the local effects could be accounted for by a point charge used in place of the metal in the GC complex.


Assuntos
Cisplatino/química , DNA/química , Oligonucleotídeos/química , Antineoplásicos/química , Química Farmacêutica/métodos , Físico-Química/métodos , Guanidina/química , Íons , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Espectrofotometria/métodos , Espectrofotometria Infravermelho/métodos
3.
J Pept Sci ; 13(1): 37-43, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17031869

RESUMO

Trifluoroacetate (CF3COO-, or TFA) is almost always present in commercially synthesized peptides. Unfortunately, it has a strong infrared (IR) absorption band at 1673 cm-1, significantly overlapping or even completely obscuring the amide I band of a peptide. In such cases TFA must be removed from the solution in order to be able to use IR absorption spectroscopy for peptide secondary structure determination. The most convenient and widely used procedure involves peptide lyophilization from a 0.1 M HCl solution. In our studies of the tryptophan-rich antimicrobial peptide indolicidin, we have found that caution should be taken when using this HCl concentration. High HCl concentrations (>10 mM in unbuffered solutions and > 50 mM in buffered solutions) may modify the peptide structure and reduce its thermal stability, thereby interfering with subsequent structural investigations of the peptide. Our results indicate that HCl concentrations between 2 and 10 mM are adequate to remove essentially all TFA impurities without any modification of the peptide secondary structure.


Assuntos
Ácido Clorídrico/química , Peptídeos/química , Ácido Trifluoracético/química , Peptídeos/síntese química , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA