Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (199)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811927

RESUMO

The blood-brain barrier (BBB) protects the brain parenchyma against harmful pathogens in the blood. The BBB consists of the neurovascular unit, comprising pericytes, astrocytic foot processes, and tightly adhered endothelial cells. Here, the brain endothelial cells form the first line of barrier against blood-borne pathogens. In conditions like cancer and neuroinflammation, circulating factors in the blood can disrupt this barrier. Disease progression significantly worsens post barrier disruption, which permits access to or impairment of regions of the brain. This significantly worsens the prognoses, particularly due to limited treatment options available at the level of the brain. Hence, emerging studies aim to investigate potential therapeutics that can prevent these detrimental factors in the blood from interacting with the brain endothelial cells. The commercially available Electric Cell-Substrate Impedance Sensing (ECIS) and cellZscope instruments measure the impedance across cellular monolayers, such as the BBB endothelium, to determine their barrier strength. Here we detail the use of both biosensors in assessing brain endothelial barrier integrity upon the addition of various stimuli. Crucially, we highlight the importance of their high-throughput capability for concurrent investigation of multiple variables and biological treatments.


Assuntos
Técnicas Biossensoriais , Neoplasias , Células Endoteliais , Impedância Elétrica , Citocinas , Encéfalo/irrigação sanguínea , Barreira Hematoencefálica , Pericitos
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047054

RESUMO

It is known that many cells produce extracellular vesicles, and this includes a range of different cancer cell types. Here we demonstrate the profound effects of large vesicular-like bodies produced by melanoma cells on the barrier integrity of human brain endothelial cells. These vesicular-bodies have not been fully characterised but range in size from ~500 nm to >10 µm, are surrounded by membrane and are enzymatically active based on cell-tracker incorporation. Their size is consistent with previously reported large oncosomes and apoptotic bodies. We demonstrate that these melanoma-derived vesicular-bodies rapidly affect brain endothelial barrier integrity, measured using ECIS biosensor technology, where the disruption is evident within ~60 min. This disruption involves acquisition of the vesicles through transcellular uptake into the endothelial cells. We also observed extensive actin-rearrangement, actin removal from the paracellular boundary of the endothelial cells and envelopment of the vesicular-bodies by actin. This was concordant with widespread changes in CD144 localisation, which was consistent with the loss of junctional strength. High-resolution confocal imaging revealed proximity of the melanoma vesicular-bodies juxtaposed to the endothelial nucleus, often containing fragmented DNA themselves, raising speculation over this association and potential delivery of nuclear material into the brain endothelial cells. The disruption of the endothelial cells occurs in a manner that is faster and completely distinct to that of invasion by intact melanoma cells. Given the clinical observation of large vesicles in the circulation of melanoma patients by others, we hypothesize their involvement in weakening or priming the brain vasculature for melanoma invasion.


Assuntos
Células Endoteliais , Melanoma , Humanos , Células Endoteliais/metabolismo , Barreira Hematoencefálica/metabolismo , Actinas/metabolismo , Encéfalo/metabolismo , Melanoma/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430641

RESUMO

Glioblastoma is refractory to therapy and presents a significant oncological challenge. Promising immunotherapies have not shown the promise observed in other aggressive cancers. The reasons for this include the highly immuno-suppressive tumour microenvironment controlled by the glioblastoma cells and heterogeneous phenotype of the glioblastoma cells. Here, we wanted to better understand which glioblastoma phenotypes produced the regulatory cytokines, particularly those that are implicated in shaping the immune microenvironment. In this study, we employed nanoString analysis of the glioblastoma transcriptome, and proteomic analysis (proteome profiler arrays and cytokine profiling) of secreted cytokines by different glioblastoma phenotypes. These phenotypes were cultured to reflect a spectrum of glioblastoma cells present in tumours, by culturing an enhanced stem-like phenotype of glioblastoma cells or a more differentiated phenotype following culture with serum. Extensive secretome profiling reveals that there is considerable heterogeneity in secretion patterns between serum-derived and glioblastoma stem-like cells, as well as between individuals. Generally, however, the serum-derived phenotypes appear to be the primary producers of cytokines associated with immune cell recruitment into the tumour microenvironment. Therefore, these glioblastoma cells have considerable importance in shaping the immune landscape in glioblastoma and represent a valuable therapeutic target that should not be ignored.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Citocinas/genética , Neoplasias Encefálicas/patologia , Proteômica , Fenótipo , Microambiente Tumoral
4.
Biosensors (Basel) ; 12(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36005056

RESUMO

We have previously shown that human melanoma cells rapidly decrease human brain endothelial barrier strength. Our findings showed a fast mechanism of melanoma mediated barrier disruption, which was localised to the paracellular junctions of the brain endothelial cells. Melanoma cells are known to release molecules which cleave the surrounding matrix and allow traversal within and out of their metastatic niche. Enzymatic families, such as matrix metalloproteinases (MMPs) and proteases are heavily implicated in this process and their complex nature in vivo makes them an intriguing family to assess in melanoma metastasis. Herein, we assessed the expression of MMPs and other proteases in melanoma conditioned media. Our results showed evidence of a high expression of MMP-2, but not MMP-1, -3 or -9. Other proteases including Cathepsins D and B were also detected. Recombinant MMP-2 was added to the apical face of brain endothelial cells (hCMVECs), to measure the change in barrier integrity using biosensor technology. Surprisingly, this showed no decrease in barrier strength. The addition of potent MMP inhibitors (batimastat, marimastat, ONO4817) and other protease inhibitors (such as aprotinin, Pefabloc SC and bestatin) to the brain endothelial cells, in the presence of various melanoma lines, showed no reduction in the melanoma mediated barrier disruption. The inhibitors batimastat, Pefabloc SC, antipain and bestatin alone decreased the barrier strength. These results suggest that although some MMPs and proteases are released by melanoma cells, there is no direct evidence that they are substantially involved in the initial melanoma-mediated disruption of the brain endothelium.


Assuntos
Metaloproteinase 2 da Matriz , Melanoma , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Endotélio/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/patologia , Peptídeo Hidrolases
5.
Biosensors (Basel) ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34940255

RESUMO

Glioblastoma is considered the most aggressive and lethal form of brain cancer. Glioblastoma tumours are complex, comprising a spectrum of oncogenically transformed cells displaying distinct phenotypes. These can be generated in culture and are called differentiated-glioblastoma cells and glioblastoma stem cells. These cells are phenotypically and functionally distinct, where the stem-like glioblastoma cells give rise to and perpetuate the tumour. Electric cell-substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method for the analysis of cellular behaviour, based on cellular adhesion. Therefore, we asked the question of whether ECIS was suitable for, and capable of measuring the adhesion of glioblastoma cells. The goal was to identify whether ECIS was capable of measuring glioblastoma cell adhesion, with a particular focus on the glioblastoma stem cells. We reveal that ECIS reliably measures adhesion of the differentiated glioblastoma cells on various array types. We also demonstrate the ability of ECIS to measure the migratory behaviour of differentiated glioblastoma cells onto ECIS electrodes post-ablation. Although the glioblastoma stem cells are adherent, ECIS is substantially less capable at reliably measuring their adhesion, compared with the differentiated counterparts. This means that ECIS has applicability for some glioblastoma cultures but much less utility for weakly adherent stem cell counterparts.


Assuntos
Técnicas Biossensoriais , Glioblastoma , Impedância Elétrica , Humanos , Células-Tronco , Tecnologia
6.
Biosensors (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069959

RESUMO

Electric Cell-Substrate Impedance Sensing (ECIS), xCELLigence and cellZscope are commercially available instruments that measure the impedance of cellular monolayers. Despite widespread use of these systems individually, direct comparisons between these platforms have not been published. To compare these instruments, the responses of human brain endothelial monolayers to TNFα and IL1ß were measured on all three platforms simultaneously. All instruments detected transient changes in impedance in response to the cytokines, although the response magnitude varied, with ECIS being the most sensitive. ECIS and cellZscope were also able to attribute responses to particular endothelial barrier components by modelling the multifrequency impedance data acquired by these instruments; in contrast the limited frequency xCELLigence data cannot be modelled. Consistent with its superior impedance sensing, ECIS exhibited a greater capacity than cellZscope to distinguish between subtle changes in modelled endothelial monolayer properties. The reduced resolving ability of the cellZscope platform may be due to its electrode configuration, which is necessary to allow access to the basolateral compartment, an important advantage of this instrument. Collectively, this work demonstrates that instruments must be carefully selected to ensure they are appropriate for the experimental questions being asked when assessing endothelial barrier properties.


Assuntos
Técnicas Biossensoriais , Células Endoteliais/fisiologia , Interleucina-1beta/química , Fator de Necrose Tumoral alfa/química , Impedância Elétrica , Humanos
7.
Immunol Cell Biol ; 99(1): 49-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32740978

RESUMO

B-cell migration within lymph nodes (LNs) is crucial to adaptive immune responses. Chemotactic gradients are proposed to drive migration of B cells into follicles, followed by their relocation to specific zones of the follicle during activation, and ultimately egress. However, the molecular drivers of these processes and the cells generating chemotactic signals that affect B cells in human LNs are not well understood. We used immunofluorescence microscopy, flow cytometry and functional assays to study molecular mechanisms of B-cell migration within human LNs, and found subtle but important differences to previous murine models. In human LNs we find CXCL13 is prominently expressed at the follicular edge, often associated with fibroblastic reticular cells located in these areas, whereas follicular dendritic cells show minimal contribution to CXCL13 expression. Human B cells rapidly downregulate CXCR5 on encountering CXCL13, but recover CXCR5 expression in the CXCL13-low environment. These data suggest that the CXCL13 gradient in human LNs is likely to be different from that proposed in mice. We also identify CD68+ CD11c+ PU.1+ tingible body macrophages within both primary and secondary follicles as likely drivers of the sphingosine-1-phosphate (S1P) gradient that mediates B-cell egress from LNs, through their expression of the S1P-degrading enzyme, S1P lyase. Based on our findings, we present a model of B-cell migration within human LNs, which has both similarities and interesting differences to that proposed for mice.


Assuntos
Quimiocina CXCL13 , Sinais (Psicologia) , Animais , Linfócitos B , Movimento Celular , Humanos , Linfonodos , Camundongos , Receptores CXCR5
8.
Immunol Cell Biol ; 99(4): 403-418, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33217047

RESUMO

Glioblastoma is a highly aggressive brain malignancy commonly refractory to classical and novel chemo-, radio- and immunotherapies, with median survival times of ~15 months following diagnosis. Poor immunological responses exemplified by the downregulation of T-cell activity, and upregulation of immunosuppressive cells within the tumor microenvironment have limited the effectiveness of immunotherapy in glioblastoma to date. Here we show that glioblastoma cells express a large repertoire of inhibitory checkpoint ligands known to control effector T cell responses. Furthermore, flow cytometry analysis reveals that glioblastoma cells with an enhanced stem cell-like phenotype express several investigated ligands at significant levels on their cell surface. This reveals that glioblastoma stem-like cells express suppressive ligands with the potential of suppressing major T cell checkpoint receptors. With this information, it is now essential that we understand the relevance of this extensive repertoire of immune checkpoint ligands and their functional consequence on immune evasion in glioblastoma. This is necessary to develop effective immunotherapeutics and to be able to match treatment to patient, especially in the light of CheckMate 143.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Imunoterapia , Ligantes , Microambiente Tumoral
9.
Int J Mol Sci ; 21(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139674

RESUMO

We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected from three New Zealand melanoma lines. ECIS technology was used to assess if the conditioned media disrupted the endothelial barrier independent of the melanoma cells. The melanoma cell secretome was assessed using cytometric bead array (CBA), Luminex immunoassay and multiplex Proteome Profilers, to detect the expression of secretory proteins, which may facilitate metastasis. Finally, ECIS technology was used to assess the direct effects of secreted proteins identified as candidates from the proteome screens. We show that melanoma-conditioned media significantly disrupted the brain endothelial barrier, however, to a much lesser extent than the cells from which they were collected. Cytokine and proteome profiling of the conditioned media showed evidence of high concentrations of approximately 15 secreted proteins (including osteopontin, IL-8, GDF-15, MIF and VEGF). These 15 secreted proteins were expressed variably across the melanoma lines. Surprisingly, the addition of these individually to the brain endothelial cells did not substantially affect the barrier integrity. ANGPTL-4 and TGFß were also produced by the melanoma cells. Whilst TGFß-1 had a pronounced effect on the barrier integrity, surprisingly ANGPTL-4 did not. However, its C-terminal fragment did and within a very similar period to the conditioned media, albeit not to the same extent. Herein we show that melanoma cells produce a wide-range of soluble factors at high concentrations, which most likely favour support or survival of the cancer cells. Most of these, except for TGFß-1 and the C-terminal fragment of ANGPTL-4, did not have an impact on the integrity of the brain endothelial cells.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Técnicas Biossensoriais/métodos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Citometria de Fluxo/métodos , Humanos , Imunoensaio/métodos , Melanoma/genética , Melanoma/patologia , Proteoma/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
10.
Cancer Immunol Res ; 8(8): 990-1003, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580941

RESUMO

Metastasis of human tumors to lymph nodes (LN) is a universally negative prognostic factor. LN stromal cells (SC) play a crucial role in enabling T-cell responses, and because tumor metastases modulate their structure and function, this interaction may suppress immune responses to tumor antigens. The SC subpopulations that respond to infiltration of malignant cells into human LNs have not been defined. Here, we identify distinctive subpopulations of CD90+ SCs present in melanoma-infiltrated LNs and compare them with their counterparts in normal LNs. The first population (CD90+ podoplanin+ CD105+ CD146+ CD271+ VCAM-1+ ICAM-1+ α-SMA+) corresponds to fibroblastic reticular cells that express various T-cell modulating cytokines, chemokines, and adhesion molecules. The second (CD90+ CD34+ CD105+ CD271+) represents a novel population of CD34+ SCs embedded in collagenous structures, such as the capsule and trabeculae, that predominantly produce extracellular matrix. We also demonstrated that these two SC subpopulations are distinct from two subsets of human LN pericytes, CD90+ CD146+ CD36+ NG2- pericytes in the walls of high endothelial venules and other small vessels, and CD90+ CD146+ NG2+ CD36- pericytes in the walls of larger vessels. Distinguishing between these CD90+ SC subpopulations in human LNs allows for further study of their respective impact on T-cell responses to tumor antigens and clinical outcomes.


Assuntos
Biomarcadores Tumorais/imunologia , Linfonodos/imunologia , Melanoma/imunologia , Pericitos/imunologia , Células Estromais/imunologia , Biomarcadores Tumorais/metabolismo , Diferenciação Celular/imunologia , Humanos , Imunofenotipagem/métodos , Linfonodos/patologia , Melanoma/classificação , Melanoma/patologia , Metástase Neoplásica , Pericitos/patologia , Células Estromais/patologia , Evasão Tumoral
11.
Biosensors (Basel) ; 9(2)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991758

RESUMO

Electric cell-substrate impedance sensing (ECIS) is an impedance-based method for monitoring changes in cell behaviour in real-time. In this paper, we highlight the importance of ECIS in measuring the kinetics of human melanoma cell invasion across human brain endothelium. ECIS data can be mathematically modelled to assess which component of the endothelial paracellular and basolateral barriers is being affected and when. Our results reveal that a range of human melanoma cells can mediate disruption of human brain endothelium, primarily involving the paracellular route, as demonstrated by ECIS. The sensitivity of ECIS also reveals that the paracellular barrier weakens within 30-60 min of the melanoma cells being added to the apical face of the endothelial cells. Imaging reveals pronounced localisation of the melanoma cells at the paracellular junctions consistent with paracellular migration. Time-lapse imaging further reveals junctional opening and disruption of the endothelial monolayer by the invasive melanoma cells all within several hours. We suggest that the ability of ECIS to resolve changes to barrier integrity in real time, and to determine the route of migration, provides a powerful tool for future studies investigating the key molecules involved in the invasive process of cancer cells.


Assuntos
Técnicas Biossensoriais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Células Endoteliais/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Impedância Elétrica , Humanos , Fatores de Tempo , Melanoma Maligno Cutâneo
12.
PLoS One ; 12(7): e0180267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732059

RESUMO

BACKGROUND: We have previously shown that TNFα and IL-1ß differentially regulate the inflammatory phenotype of human brain endothelial cells (hCMVECs). In this regard, IL-1ß treatment was considerably more potent than TNFα at increasing expression of inflammatory chemokines and leukocyte adhesion molecules. We therefore hypothesised that interaction of the hCMVECs with human monocytes would also be dependent on the activation status of the endothelium. Therefore, the primary aim of this study was to assess whether brain endothelial cells activated by IL-1ß or TNFα differed in their interaction with monocytes. METHODS: Monocyte interaction was measured using the real time, label-free impedance based ECIS technology, to evaluate endothelial barrier integrity during monocyte attachment and transendothelial migration. RESULTS: ECIS technology revealed that there was a greater loss of barrier integrity with IL-1ß activation and this loss lasted for longer. This was expected and consistent with our hypothesis. However, more striking and concerning was the observation that the method of monocyte enrichment greatly influenced the extent of endothelial barrier compromise. Importantly, we observed that positively isolated monocytes (CD14+ve) caused greater reduction in barrier resistance, than the negatively selected monocytes (untouched). Analysis of the isolated monocyte populations revealed that the CD14+ve isolation consistently yields highly pure monocytes (>92%), whereas the untouched isolation was much more variable, yielding ~70% enrichment on average. These two enrichment methods were compared as it was thought that the presence of non-classical CD16hi monocytes in the untouched enrichment may mediate greater compromise than the classical CD14hi monocytes. This however, was not the case and these observations raise a number of important considerations pertaining to the enrichment strategy, which are essential for generating reliable and consistent data. CONCLUSIONS: We conclude that IL-1ß and TNFα differentially influence monocyte interaction with brain endothelial cells and moreover, the enrichment method also influences the monocyte response as revealed using ECIS technology.


Assuntos
Barreira Hematoencefálica/metabolismo , Endotélio Vascular/metabolismo , Interleucina-1beta/metabolismo , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Barreira Hematoencefálica/citologia , Western Blotting , Permeabilidade Capilar/fisiologia , Separação Celular , Células Cultivadas , Endotélio Vascular/citologia , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/citologia
13.
Gigascience ; 4: 63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26675891

RESUMO

BACKGROUND: Phosphoprotein signalling pathways have been intensively studied in vitro, yet their role in regulating tissue homeostasis is not fully understood. In the skin, interfollicular keratinocytes differentiate over approximately 2 weeks as they traverse the epidermis. The extracellular signal-regulated kinase (ERK) branch of the mitogen-activated protein kinase (MAPK) pathway has been implicated in this process. Therefore, we examined ERK-MAPK activity within human epidermal keratinocytes in situ. FINDINGS: We used confocal microscopy and immunofluorescence labelling to measure the relative abundances of Raf-1, MEK1/2 and ERK1/2, and their phosphorylated (active) forms within three human skin samples. Additionally, we measured the abundance of selected proteins thought to modulate ERK-MAPK activity, including calmodulin, ß1 integrin and stratifin (14-3-3σ); and of transcription factors known to act as effectors of ERK1/2, including the AP-1 components Jun-B, Fra2 and c-Fos. Imaging was performed with sufficient resolution to identify the plasma membrane, cytoplasm and nucleus as distinct domains within cells across the epidermis. The image field of view was also sufficiently large to capture the entire epidermis in cross-section, and thus the full range of keratinocyte differentiation in a single observation. Image processing methods were developed to quantify image data for mathematical and statistical analysis. Here, we provide raw image data and processed outputs. CONCLUSIONS: These data indicate coordinated changes in ERK-MAPK signalling activity throughout the depth of the epidermis, with changes in relative phosphorylation-mediated signalling activity occurring along the gradient of cellular differentiation. We believe these data provide unique information about intracellular signalling as they are obtained from a homeostatic human tissue, and they might be useful for investigating intercellular heterogeneity.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Células Epidérmicas , Epiderme/metabolismo , Fluorescência , Antígeno 2 Relacionado a Fos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo
14.
J Neuroinflammation ; 12: 131, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26152369

RESUMO

BACKGROUND: The vasculature of the brain is composed of endothelial cells, pericytes and astrocytic processes. The endothelial cells are the critical interface between the blood and the CNS parenchyma and are a critical component of the blood-brain barrier (BBB). These cells are innately programmed to respond to a myriad of inflammatory cytokines or other danger signals. IL-1ß and TNFα are well recognised pro-inflammatory mediators, and here, we provide compelling evidence that they regulate the function and immune response profile of human cerebral microvascular endothelial cells (hCMVECs) differentially. METHODS: We used xCELLigence biosensor technology, which revealed global differences in the endothelial response between IL-1ß and TNFα. xCELLigence is a label-free impedance-based biosensor, which is ideal for acute or long-term comparison of drug effects on cell behaviour. In addition, flow cytometry and multiplex cytokine arrays were used to show differences in the inflammatory responses from the endothelial cells. RESULTS: Extensive cytokine-secretion profiling and cell-surface immune phenotyping confirmed that the immune response of the hCMVEC to IL-1ß was different to that of TNFα. Interestingly, of the 38 cytokines, chemokines and growth factors measured by cytometric bead array, the endothelial cells secreted only 13. Of importance was the observation that the majority of these cytokines were differentially regulated by either IL-1ß or TNFα. Cell-surface expression of ICAM-1 and VCAM-1 were also differentially regulated by IL-1ß or TNFα, where TNFα induced a substantially higher level of expression of both key leukocyte-adhesion molecules. A range of other cell-surface cellular and junctional adhesion molecules were basally expressed by the hCMVEC but were unaffected by IL-1ß or TNFα. CONCLUSIONS: To our knowledge, this is the most comprehensive analysis of the immunological profile of brain endothelial cells and the first direct evidence that human brain endothelial cells are differentially regulated by these two key pro-inflammatory mediators.


Assuntos
Encefalite/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Interleucina-1beta/farmacologia , Fenótipo , Fator de Necrose Tumoral alfa/farmacologia , Encéfalo/irrigação sanguínea , Linhagem Celular , Citocinas/metabolismo , Encefalite/metabolismo , Células Endoteliais/metabolismo , Humanos , Imunofenotipagem , Molécula 1 de Adesão Intercelular/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Proteínas de Junções Íntimas/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Eur J Immunol ; 44(8): 2425-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24825162

RESUMO

Lymph nodes (LNs) form the intersection between the vascular and lymphatic systems. Lymphocytes and antigen-presenting cells (APCs) traffic between these systems, but the barriers crossed during this trafficking in human LNs are poorly defined. We identified a population of cells in human LNs that lines the boundary between the parenchyma and lymphatic sinuses, consistent with descriptions of marginal reticular cells (MRCs) in murine LNs. Human MRCs are CD141(high) podoplanin(+), CD90(+), ICAM1(+), and VCAM1(+) but lack endothelial and hematopoietic cell markers, or alpha-smooth muscle actin. We then examined expression of the enzyme sphingosine-1-phosphate (S1P) lyase (SGPL1) relative to the boundary defined by MRCs. SGPL1 expression was almost exclusively restricted to cells on the parenchymal side of MRCs, consistent with a role in maintaining the S1P gradient between the sinuses and the parenchyma. Surprisingly the cells expressing SGPL1 in the parenchyma were CD68(+) APCs. CD68(+) APCs generated from human monocytes were able to internalize and irreversibly degrade S1P, and this activity was inhibited by the S1P analogue FTY720. This work provides a map of the key structures at the boundary where human lymphocytes egress into sinuses, and identifies a novel potential mechanism for the activity of S1P analogues in humans.


Assuntos
Aldeído Liases/biossíntese , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfonodos/enzimologia , Células do Mesofilo/enzimologia , Movimento Celular/fisiologia , Humanos , Linfonodos/citologia , Linfonodos/metabolismo , Sistema Linfático/citologia , Sistema Linfático/enzimologia , Sistema Linfático/metabolismo , Linfócitos/citologia , Linfócitos/enzimologia , Linfócitos/metabolismo , Lisofosfolipídeos/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Monócitos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
16.
Neurochem Int ; 60(6): 573-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21939706

RESUMO

Astrocytes are a very important cell type in the brain fulfilling roles in both neuroimmunology and neurotransmission. We have conducted the most comprehensive analysis of secreted cytokines conducted to date (astrocytes of any source) to determine whether astrocytes derived from the human Ntera2 (NT2) cell-line are a good model of human primary astrocytes. We have compared the secretion of cytokines from NT2 astrocytes with those produced in astrocyte enriched human brain cultures and additional cytokines implicated in brain injury or known to be expressed in the human brain. The concentration of cytokines was measured in astrocyte conditioned media using multiplex bead array (MBA), where 18 cytokines were measured simultaneously. Resting NT2 astrocytes produced low levels (∼1-30 pg/ml) of MIP1α, IL-6 and GM-CSF and higher levels of MCP-1, IP-10 and IL-8 (1-11 ng/ml) under non-inflammatory conditions. All of these in addition to IL-1ß, TNFα, and IL-13, were increased by pro-inflammatory activation (TNFα or IL-1ß stimulation). In contrast, IL-2, IL-4, IL-5, IL-7, IL-10, IL-12, LTα, and IFNγ were not detected in astrocyte conditioned media under any of the culture conditions tested. NT2 astrocytes were unresponsive to IL-2 and the adenyl cyclase agonist, forskolin. Interestingly, IFNγ stimulation selectively increased IP-10 secretion only. As astrocytes stimulated with IL-1ß or TNFα produced several chemokines in the ng/ml range, we next assessed the chemoattractant properties of these cells. Conditioned media from TNFα-stimulated astrocytes significantly chemoattracted leukocytes from human blood. This study provides the most comprehensive analysis of cytokine production by human astrocytes thus far, and shows that NT2 astrocytes are highly responsive to pro-inflammatory mediators including TNFα and IL-1ß, producing cytokines and chemokines capable of attracting leukocytes from human blood. We conclude that in the absence of adult human primary astrocytes that NT2-astrocytes may provide a valuable alternative to study the immunological behaviour of human astrocytes.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Citocinas/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Astrócitos/patologia , Comunicação Celular/imunologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/imunologia , Humanos , Imunoensaio/métodos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Neurotransmissores/fisiologia
17.
J Neurosci Methods ; 200(2): 173-80, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21781988

RESUMO

We have conducted the first profiling of human Natural Killer (NK) cell mediated killing of astrocytes using xCELLigence technology. The sensitivity and applicability of xCELLigence was compared to lactate dehydrogenase (LDH) release and time-lapsed microscopy to validate the killing events. The xCELLigence technology uses electrical impedance measurements from adherent cells and converts into Cell Index (CI). NK cells did not register any Cell Index signal directly, therefore all changes in Cell Index are a direct measure of astrocyte responses. Astrocytes are insensitive to basal NK cells (non-activated NKs). Whereas NK cells activated by IL-2 prior to culture with targets rapidly kill astrocytes. This observation was supported by all methods of analysis. Using the xCELLigence we were able to monitor the longer term killing profile. This demonstrated that at all NK ratios, death was achieved if given long enough. In addition, the development of the killing phenotype was investigated by inducing lymphokine activated killing with IL-2 in the presence of the target astrocytes. In this paradigm of killing, the xCELLigence was the only assay suitable due to the prolonged time-course required for killing, which required 4-5 days to achieve maximal killing (100%). This suggested that the astrocytes can directly suppress the killing activity of the NK cells. These data highlight the sensitivity, applicability and profiling power of the xCELLigence system and support its use for further investigation of NK-killing of healthy and/or tumourogenic astrocytic cells.


Assuntos
Astrócitos/patologia , Técnicas Citológicas/métodos , Células Matadoras Naturais/fisiologia , Coloração e Rotulagem , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Transformada , Humanos , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Linfocinas/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
18.
J Exp Med ; 207(6): 1247-60, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20479116

RESUMO

The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141+ DC subset. CD141+ DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c+ DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141+ DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8+ cytotoxic T lymphocytes than poly I:C-activated CD1c+ DCs. Importantly, CD141+ DCs, but not CD1c+ DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141+ DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8alpha+ DC subset. The data demonstrate a role for CD141+ DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.


Assuntos
Antígenos de Superfície/metabolismo , Antígenos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Mieloides/citologia , Necrose/imunologia , Trombomodulina/metabolismo , Antígenos CD1/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Apresentação Cruzada/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Humanos , Interferon beta/biossíntese , Interleucina-12/biossíntese , Tecido Linfoide/citologia , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Necrose/patologia , Fosfoproteínas/imunologia , Poli I-C/farmacologia , Proteínas Recombinantes/imunologia , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Receptor 3 Toll-Like/metabolismo , Proteínas da Matriz Viral/imunologia
19.
Neoplasia ; 11(8): 793-803, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19649209

RESUMO

5,6-Dimethylxanthenone-4-acetic acid (DMXAA) acts through tumor vascular disruption and cytokine production and is the first of its class to enter phase 3 trials. We characterized leukocytes and cytokines in murine Colon 38 tumors before and after DMXAA treatment. Tumor mass declined 50% 24 hours after DMXAA administration, but the leukocyte count per gram of tumor increased threefold owing to a large influx of Ly6G(+)CD11b(+)F4/80(-) cells with the morphology of neutrophils. However, B and T lymphocytes, natural killer cells, and macrophages in the tumor all decreased in numbers. Seven chemokines were substantially induced in the tumor, spleen, and serum 4 hours after DMXAA administration. Using cultured spleen cell subpopulations, CD11b(+) cells (largely monocytes and macrophages) were shown to be the primary producers of tumor necrosis factor alpha, interleukin 6 (IL-6), and macrophage inflammatory 1alpha (MIP-1alpha). CD49b(+) natural killer cells produced IP-10, whereas CD45R(+) B lymphocytes produced regulated upon activation normal T cell express sequence. T lymphocytes were not major producers of cytokines in the response to DMXAA. Murine peripheral blood leukocytes (PBLs) produced a similar panel of cytokines in culture to that detected in mouse serum after DMXAA treatment. Cytokines in human PBL cultures were subsequently measured with the aim of identifying potential serum markers of the human response to DMXAA. IP-10 (P < .001), monocyte chemoattractant protein 1 (P < .001), and sCD40L (P < .01) were decreased, whereas IL-8 (P < .001) and MIP-1alpha (P = .03) were increased in DMXAA-treated compared with untreated PBL cultures from a group of 12 donors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Citocinas/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Xantonas/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Neoplasias do Colo/imunologia , Citocinas/biossíntese , Citometria de Fluxo , Imunofluorescência , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
20.
J Immunol ; 182(3): 1260-9, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19155471

RESUMO

An efficient pathway of cross-presentation common to a range of dendritic cell (DC) populations was identified by targeting Ag to MHC class II molecules. This finding was achieved by conjugating Ag to M1, which is a modified version of the superantigen streptococcal mitogenic exotoxin Z-2 that binds to MHC class II molecules but cannot directly stimulate T cells. M1 conjugates were efficiently presented to CD4(+) and CD8(+) T cells by bone marrow-derived DC and Langerhans cells in vitro. Whereas nonconjugated Ag was preferentially cross-presented by splenic CD8alpha(+) DC in vivo, M1-conjugated Ag was cross-presented by all dendritic subtypes assessed. Potent effector T cell responses with antitumor activity were elicited when M1 conjugates were injected together with an adjuvant. This method of Ag delivery has significant potential in therapeutic applications.


Assuntos
Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/imunologia , Apresentação Cruzada/imunologia , Sistemas de Liberação de Medicamentos/métodos , Exotoxinas/administração & dosagem , Exotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Toxinas Bacterianas/metabolismo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Exotoxinas/metabolismo , Ligantes , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Superantígenos/administração & dosagem , Superantígenos/imunologia , Superantígenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA