Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39414958

RESUMO

Fragment crystallizable gamma receptors (FcγRs) mediate various cellular responses with significant cardiovascular implications. They contribute to the anticancer activity of trastuzumab (TRZ), a recombinant humanized monoclonal antibody that interferes with human epidermal growth factor receptor 2 (HER2), thereby blocking its physiological function in cardiac cells. This is responsible for cardiac complications that hamper TRZ clinical application. In this study we investigated the involvement of FcγRs in the TRZ cardiotoxicity. We used a recombinant antigen-binding fragment (Fab) of TRZ (rFab-HER2) to examine whether the absence of the Fc region resulted in fewer cardiomyocyte toxicity while preserving TRZ's ability to inhibit HER2. When exposed to rFab-HER2, AC16 human adult ventricular cardiomyocytes were less vulnerable to damage and death, than to TRZ. Specifically, TRZ exhibited cytotoxicity at a lower concentration (150 µg/mL, corresponding to ~1 µM) compared to rFab-HER2 (250 µg/mL, corresponding to ~5 µM). Like TRZ, rFab-HER2 negatively modulated HER2 levels in cardiomyocyte (without inducing cytotoxic activity in BJ human fibroblast cells that either did not express or express very low levels of HER2) and inhibited the downstream ERK/AKT cascades. But rFab-HER2 did not alter cardiomyocyte mitochondrial dynamic balance, and affect apoptosis and inflammation, while it limited cytosolic and mitochondrial ROS indicators. On contrary, the Fc region (50-250 µg/mL) exerted direct cytotoxic action on cardiomyocytes (but not on human fibroblasts that lacked Fc receptors). TRZ (150 µg/mL) markedly upregulated the expression level of FcγRIIA (a FcγRs strongly involved in TRZ-induced antibody-dependent cellular toxicity) in cardiomyocytes, whereas the Fab fragment (150 µg/mL) had no effect. Our results demonstrate that Fc region plays an important pathogenic role in TRZ-induced cardiomyocyte toxicity. In addition, targeting FcγRIIA might contribute to the off-target effects of TRZ therapy.

2.
J Transl Med ; 21(1): 635, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726810

RESUMO

A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Neoplasias , Humanos , Neoplasias/complicações , Carcinogênese , Mitocôndrias
3.
Exp Neurol ; 366: 114432, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149279

RESUMO

Autism Spectrum Disorder (ASD) is increasing, but its complete etiology is still lacking. Recently, application of ketogenic diet (KD) has shown to reduce abnormal behaviors while improving psychological/sociological status in neurodegenerative diseases. However, KD role on ASD and underlying mechanism remains unknown. In this work, KD administered to BTBR T+ Itpr3tf/J (BTBR) and C57BL/6J (C57) mice reduced social deficits (p = 0.002), repetitive behaviors (p < 0.001) and memory impairments (p = 0.001) in BTBR. Behavioral effects were related to reduced expression levels of tumor necrosis factor alpha, interleukin-1ß, and interleukin-6 in the plasma (p = 0.007; p < 0.001 and p = 0.023, respectively), prefrontal cortex (p = 0.006; p = 0.04 and p = 0.03) and hippocampus (p = 0.02; p = 0.09 and p = 0.03). Moreover, KD accounted for reduced oxidative stress by changing lipid peroxidation levels and superoxide dismutase activity in BTBR brain areas. Interestingly, KD increased relative abundances of putatively beneficial microbiota (Akkermansia and Blautia) in BTBR and C57 mice while reversing the increase of Lactobacillus in BTBR feces. Overall, our findings suggest that KD has a multifunctional role since it improved inflammatory plus oxidative stress levels together with remodeling gut-brain axis. Hence, KD may turn out be a valuable therapeutic approach for ameliorating ASD-like conditions even though more evidence is required to evaluate its effectiveness especially on a long term.


Assuntos
Transtorno do Espectro Autista , Dieta Cetogênica , Microbiota , Camundongos , Animais , Transtorno do Espectro Autista/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-36834186

RESUMO

Cardiac lipotoxicity plays an important role in the pathogenesis of obesity-related cardiovascular disease. The flavonoid quercetin (QUE), a nutraceutical compound that is abundant in the "Mediterranean diet", has been shown to be a potential therapeutic agent in cardiac and metabolic diseases. Here, we investigated the beneficial role of QUE and its derivative Q2, which demonstrates improved bioavailability and chemical stability, in cardiac lipotoxicity. To this end, H9c2 cardiomyocytes were pre-treated with QUE or Q2 and then exposed to palmitate (PA) to recapitulate the cardiac lipotoxicity occurring in obesity. Our results showed that both QUE and Q2 significantly attenuated PA-dependent cell death, although QUE was effective at a lower concentration (50 nM) when compared with Q2 (250 nM). QUE decreased the release of lactate dehydrogenase (LDH), an important indicator of cytotoxicity, and the accumulation of intracellular lipid droplets triggered by PA. On the other hand, QUE protected cardiomyocytes from PA-induced oxidative stress by counteracting the formation of malondialdehyde (MDA) and protein carbonyl groups (which are indicators of lipid peroxidation and protein oxidation, respectively) and intracellular ROS generation, and by improving the enzymatic activities of catalase and superoxide dismutase (SOD). Pre-treatment with QUE also significantly attenuated the inflammatory response induced by PA by reducing the release of key proinflammatory cytokines (IL-1ß and TNF-α). Similar to QUE, Q2 (250 nM) also significantly counteracted the PA-provoked increase in intracellular lipid droplets, LDH, and MDA, improving SOD activity and decreasing the release of IL-1ß and TNF-α. These results suggest that QUE and Q2 could be considered potential therapeutics for the treatment of the cardiac lipotoxicity that occurs in obesity and metabolic diseases.


Assuntos
Miócitos Cardíacos , Quercetina , Humanos , Quercetina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Superóxido Dismutase/metabolismo
5.
Biomedicines ; 10(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35327322

RESUMO

Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).

6.
Antioxidants (Basel) ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143213

RESUMO

The impaired ability to feed properly, evident in oncologic, elderly, and dysphagic patients, may result in malnutrition and sarcopenia. Increasing the consumption of dietary proteins by functional foods and enriching their composition by adding beneficial nutrients may represent an adjuvant therapy. We aimed to evaluate the safety and the positive effects of a standard diet (SD) supplemented with whey-derived protein puddings (WDPP), with appropriate rheological properties, and hemp seed oil (HSO), rich in polyphenols. Rats were assigned to SD, WDPP, WDPP plus hemp seed oil (HSOP), and HSO supplemented diets for eight weeks. "Anthropometric", metabolic, and biochemical variables, oxidative stress, tissue injury, liver histology, and cardiac susceptibility to ischemia/reperfusion were analyzed. All the supplementations did not induce significant changes in biochemical and metabolic variables, also in relation to glucose tolerance, and livers did not undergo morphological alteration and injury. An improvement of cardiac post-ischemic function in the Langendorff perfused heart model and a reduction of infarct size were observed in WDPP and HSOP groups, thanks to their antioxidant effects and the activation of Akt- and AMPK-dependent protective pathways. Data suggest that (i) functional foods enriched with WDPP and HSOP may be used to approach malnutrition and sarcopenia successfully under disabling conditions, also conferring cardioprotection, and that (ii) adequate rheological properties could positively impact dysphagia-related problems.

7.
Front Immunol ; 11: 2094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973818

RESUMO

The spread of the novel human respiratory coronavirus (SARS-CoV-2) is a global public health emergency. There is no known successful treatment as of this time, and there is a need for medical options to mitigate this current epidemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and is primarily trophic for the lower and upper respiratory tract. A number of current studies on COVID-19 have demonstrated the substantial increase in pro-inflammatory factors in the lungs during infection. The virus is also documented in the central nervous system and, particularly in the brainstem, which plays a key role in respiratory and cardiovascular function. Currently, there are few antiviral approaches, and several alternative drugs are under investigation. Two of these are Idelalisib and Ebastine, already proposed as preventive strategies in airways and allergic diseases. The interesting and evolving potential of phosphoinositide 3-kinase δ (PI3Kδ) inhibitors, together with Ebastine, lies in their ability to suppress the release of pro-inflammatory cytokines, such as IL-1ß, IL-8, IL-6, and TNF-α, by T cells. This may represent an optional therapeutic choice for COVID-19 to reduce inflammatory reactions and mortality, enabling patients to recover faster. This concise communication aims to provide new potential therapeutic targets capable of mitigating and alleviating SARS-CoV-2 pandemic infection.


Assuntos
Betacoronavirus , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Terapia de Alvo Molecular/métodos , Pneumonia Viral/tratamento farmacológico , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antirreumáticos/uso terapêutico , Antivirais/uso terapêutico , Butirofenonas/farmacologia , Butirofenonas/uso terapêutico , COVID-19 , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Coronavirus/virologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/sangue , Pandemias , Peptidil Dipeptidase A/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pneumonia Viral/virologia , Purinas/farmacologia , Purinas/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
9.
Antioxid Redox Signal ; 32(15): 1081-1097, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31928066

RESUMO

Significance: Despite their serious side effects, anthracyclines (ANTs) are the most prescribed chemotherapeutic drugs because of their strong efficacy in both solid and hematological tumors. A major limitation to ANTs clinical application is the severe cardiotoxicity observed both acutely and chronically. The mechanism underlying cardiac dysfunction under chemotherapy is mainly dependent on the generation of oxidative stress and systemic inflammation, both of which lead to progressive cardiomyopathy and heart failure. Recent Advances: Over the years, the iatrogenic ANTs-induced cardiotoxicity was believed to be simply given by iron metabolism and reactive oxygen species production; however, several experimental data indicate that ANTs may use alternative damaging mechanisms, such as topoisomerase 2ß inhibition, inflammation, pyroptosis, immunometabolism, and autophagy. Critical Issues: In this review, we aimed at discussing ANTs-induced cardiac injury from different points of view, updating and focusing on oxidative stress and inflammation, since these pathways are not exclusive or independent from each other but they together importantly contribute to the complexity of ANTs-induced multifactorial cardiotoxicity. Future Directions: A deeper understanding of the mechanistic signaling leading to ANTs side effects could reveal crucial targeting molecules, thus representing strategic knowledge to promote better therapeutic efficacy and lower cardiotoxicity during clinical application.


Assuntos
Antraciclinas/efeitos adversos , Antineoplásicos/efeitos adversos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais , Cardiotoxicidade/complicações , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Cell Mol Life Sci ; 76(20): 3969-3985, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31218451

RESUMO

Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.


Assuntos
Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peptídeos/uso terapêutico , Selenocisteína/metabolismo , Selenoproteínas/genética , Animais , Antioxidantes/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Regulação da Expressão Gênica , Glutationa Peroxidase/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/agonistas , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
11.
J Nutr Biochem ; 69: 151-162, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31096072

RESUMO

Recently the attention of the scientific community has focused on the ability of polyphenols to counteract adverse epigenetic regulation involved in the development of complex conditions such as obesity. The aim of this study was to investigate the epigenetic mechanisms underlying the anti-adiposity effect of Quercetin (3,3',4',5,7-pentahydroxyflavone) and of one of its derivatives, Q2 in which the OH groups have been replaced by acetyl groups. In 3 T3-L1 preadipocytes, Quercetin and Q2 treatment induce chromatin remodeling and histone modifications at the 5' regulatory region of the two main adipogenic genes, c/EBPα and PPARγ. Chromatin immunoprecipitation assays revealed a concomitant increase of histone H3 di-methylation at Lys9, a typical mark of repressed gene promoters, and a decrease of histone H3 di-methylation at Lys 4, a mark of active transcription. At the same time, both compounds inhibited histone demethylase LSD1 recruitment to the 5' region of c/EBPα and PPARγ genes, a necessary step for adipogenesis. The final effect is a significant reduction in c/EBPα and PPARγ gene expression and attenuated adipogenesis. Q2 supplementation in rats reduced the gain in body weight and in white adipose tissue, as well as the increase in adipocyte size determined by high fat diet. Moreover, Q2 improved dyslipidemia, glucose tolerance and decreased the hepatic lipid accumulation by activating the expression of beta-oxidation related genes. Our data suggest that Q2, as well as Quercetin, has the potential to revert the unfavorable epigenomic profiles associated with obesity onset. This opens the possibility to use these compounds in targeted prevention strategies against obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Benzopiranos/farmacologia , Cromatina/efeitos dos fármacos , Obesidade/prevenção & controle , Quercetina/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Adipogenia/fisiologia , Animais , Fármacos Antiobesidade/farmacologia , Disponibilidade Biológica , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , PPAR gama/genética , Quercetina/farmacocinética , Ratos Wistar
12.
FASEB J ; 33(6): 7734-7747, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973759

RESUMO

The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cromogranina A/metabolismo , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Front Physiol ; 9: 521, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867564

RESUMO

G protein-coupled estrogen receptor (GPER) is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR) hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS) and mitochondrial K+-ATP (MitoKATP) channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM) alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 µM), of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions, including hypertension, reduce the efficacy of ischemic conditioning strategies. However, G1-induced protection can result in significant reduction of I/R injury also female in hypertensive animals. Further studies may ascertain the clinical translation of the present results.

15.
Neuroscience ; 375: 158-168, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432887

RESUMO

It is already widely known that the different brain areas involved in blood pressure control, are highly vulnerable to the deleterious effects of this condition. Of particular concern are hypertensive and neuroinflammatory-dependent injuries that by modifying blood flow account for artery structural and functional alterations. It was thus our intention to establish if expression changes of some key brain neuroinflammatory factors like caspase-1,3, NF-kB, IL-1ß and NLRP3, which are known to control blood pressure, are actively involved with inflammation regulatory events in a highly valuable spontaneously hypertensive rat (SHR) model. Indeed, notably increased (p < 0.001) caspase-1, NLRP3 and IL-1ß mRNA levels were detected in amygdalar plus hypothalamic areas of SHR. Contextually, similar up-regulated levels of these factors were also reported in brainstem nuclei with respect to the few hippocampal areas. This trend was supported by moderate increases (p < 0.05) of NLRP3 in amygdalar and brainstem sites, while notably greater expression differences of NF-kB protein were observed in hippocampal and hypothalamic areas of SHR. At the same time, moderately increased levels of iNOS were typical of all of the above brain areas with the exception of the consistently (p < 0.01) increased levels featured in the brainstem. Moreover, even immunohistochemical evaluations supplied notably and moderately increased cleaved caspase-3 cell levels in hippocampus and hypothalamus areas, respectively. Overall, evident hypertensive bouts correlated to neuroinflammatory events, especially in brain areas controlling blood pressure, tend to underlie the value of novel therapeutic approaches designed to improve brain blood flow and subsequently reduce hypertensive-dependent cerebral complications.


Assuntos
Encéfalo/imunologia , Hipertensão/imunologia , Inflamação/metabolismo , Animais , Caspase 1/metabolismo , Caspase 3/metabolismo , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroimunomodulação/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Cell Mol Life Sci ; 75(4): 743-756, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28965207

RESUMO

Phoenixin-14 (PNX) is a newly identified peptide co-expressed in the hypothalamus with the anorexic and cardioactive Nesfatin-1. Like Nesfatin-1, PNX is able to cross the blood-brain barrier and this suggests a role in peripheral modulation. Preliminary mass spectrography data indicate that, in addition to the hypothalamus, PNX is present in the mammalian heart. This study aimed to quantify PNX expression in the rat heart, and to evaluate whether the peptide influences the myocardial function under basal condition and in the presence of ischemia/reperfusion (I/R). By ELISA the presence of PNX was detected in both hypothalamus and heart. In plasma of normal, but not of obese rats, the peptide concentrations increased after meal. Exposure of the isolated and Langendorff perfused rat heart to exogenous PNX induces a reduction of contractility and relaxation, without effects on coronary pressure and heart rate. As revealed by immunoblotting, these effects were accompanied by an increase of Erk1/2, Akt and eNOS phosphorylation. PNX (EC50 dose), administered after ischemia, induced post-conditioning-like cardioprotection. This was revealed by a smaller infarct size and a better systolic recovery with respect to those detected on hearts exposed to I/R alone. The peptide also activates the cardioprotective RISK and SAFE cascades and inhibits apoptosis. These effects were also observed in the heart of obese rats. Our data provide a first evidence on the peripheral activity of PNX and on its direct cardiomodulatory and cardioprotective role under both normal conditions and in the presence of metabolic disorders.


Assuntos
Citoproteção , Coração/efeitos dos fármacos , Coração/fisiologia , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipotalâmicos/fisiologia , Miocárdio/metabolismo , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/fisiologia , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Hormônios Hipotalâmicos/isolamento & purificação , Hormônios Hipotalâmicos/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Hormônios Peptídicos/isolamento & purificação , Hormônios Peptídicos/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
17.
Pflugers Arch ; 470(1): 143-154, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875377

RESUMO

The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.


Assuntos
Células Cromafins/metabolismo , Cromograninas/química , Fragmentos de Peptídeos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Cromograninas/metabolismo , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Fragmentos de Peptídeos/química
18.
J Cell Mol Med ; 21(12): 3670-3678, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28744974

RESUMO

Patients with ischaemic heart disease or chronic heart failure show altered levels of obestatin, suggesting a role for this peptide in human heart function. We have previously demonstrated that GH secretagogues and the ghrelin gene-derived peptides, including obestatin, exert cardiovascular effects by modulating cardiac inotropism and vascular tone, and reducing cell death and contractile dysfunction in hearts subjected to ischaemia/reperfusion (I/R), through the Akt/nitric oxide (NO) pathway. However, the mechanisms underlying the cardiac actions of obestatin remain largely unknown. Thus, we suggested that obestatin-induced activation of PI3K/Akt/NO and PKG signalling is implicated in protection of the myocardium when challenged by adrenergic, endothelinergic or I/R stress. We show that obestatin exerts an inhibitory tone on the performance of rat papillary muscle in both basal conditions and under ß-adrenergic overstimulation, through endothelial-dependent NO/cGMP/PKG signalling. This pathway was also involved in the vasodilator effect of the peptide, used both alone and under stress induced by endothelin-1. Moreover, when infused during early reperfusion, obestatin reduced infarct size in isolated I/R rat hearts, through an NO/PKG pathway, comprising ROS/PKC signalling, and converging on mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels. Overall, our results suggest that obestatin regulates cardiovascular function in stress conditions and induces cardioprotection by mechanisms dependent on activation of an NO/soluble guanylate cyclase (sGC)/PKG pathway. In fact, obestatin counteracts exaggerated ß-adrenergic and endothelin-1 activity, relevant factors in heart failure, suggesting multiple positive effects of the peptide, including the lowering of cardiac afterload, thus representing a potential candidate in pharmacological post-conditioning.


Assuntos
Cardiotônicos/farmacologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico/metabolismo , Hormônios Peptídicos/farmacologia , Animais , Cardiotônicos/química , Cardiotônicos/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Endotelina-1/antagonistas & inibidores , Endotelina-1/farmacologia , Regulação da Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Técnicas de Cultura de Órgãos , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
19.
Prog Neurobiol ; 154: 37-61, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28442394

RESUMO

The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.


Assuntos
Cromograninas/metabolismo , Animais , Humanos , Peptídeos/metabolismo
20.
J Cell Physiol ; 232(7): 1640-1649, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27607345

RESUMO

The use of Doxorubicin (Dox), a frontline drug for many cancers, is often complicated by dose-limiting cardiotoxicity in approximately 20% of patients. The G-protein estrogen receptor GPER/GPR30 mediates estrogen action as the cardioprotection under certain stressful conditions. For instance, GPER activation by the selective agonist G-1 reduced myocardial inflammation, improved immunosuppression, triggered pro-survival signaling cascades, improved myocardial mechanical performance, and reduced infarct size after ischemia/reperfusion (I/R) injury. Hence, we evaluated whether ligand-activated GPER may exert cardioprotection in male rats chronically treated with Dox. 1 week of G-1 (50 µg/kg/day) intraperitoneal administration mitigated Dox (3 mg/kg/day) adverse effects, as revealed by reduced TNF-α, IL-1ß, LDH, and ROS levels. Western blotting analysis of cardiac homogenates indicated that G-1 prevents the increase in p-c-jun, BAX, CTGF, iNOS, and COX2 expression induced by Dox. Moreover, the activation of GPER rescued the inhibitory action elicited by Dox on the expression of BCL2, pERK, and pAKT. TUNEL assay indicated that GPER activation may also attenuate the cardiomyocyte apoptosis upon Dox exposure. Using ex vivo Langendorff perfused heart technique, we also found an increased systolic recovery and a reduction of both infarct size and LDH levels in rats treated with G-1 in combination with Dox respect to animals treated with Dox alone. Accordingly, the beneficial effects induced by G-1 were abrogated in the presence of the GPER selective antagonist G15. These data suggest that GPER activation mitigates Dox-induced cardiotoxicity, thus proposing GPER as a novel pharmacological target to limit the detrimental cardiac effects of Dox treatment. J. Cell. Physiol. 232: 1640-1649, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/efeitos adversos , Quinolinas/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotoxicidade/sangue , Cardiotoxicidade/patologia , Cardiotoxicidade/fisiopatologia , Diástole/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Inflamação/patologia , Interleucina-1beta/sangue , L-Lactato Desidrogenase/sangue , Ligantes , Masculino , Isquemia Miocárdica/sangue , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/sangue , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator de Necrose Tumoral alfa/sangue , Função Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA