Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(4): 1580-1593, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34991150

RESUMO

We report the synthesis of the macrocyclic ligands 3,9-PC2AMH (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)diacetamide) and 3,9-PC2AMtBu (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)bis(N-tert-butyl)acetamide) which contain a pyclen platform functionalized with acetamide or tert-butylacetamide pendant arms at positions 3 and 9 of the macrocyclic unit. The corresponding Co(II) and Ni(II) complexes were prepared, isolated and characterised as potential paramagnetic chemical exchange saturation transfer (paraCEST) agents. The X-ray structures of the Ni(II) complexes reveal six-coordination of the ligands to the metal ion. The Co(II) complex with 3,9-PC2AMtBu shows a similar six-coordinate structure in the solid state, while the Co(II) complex with 3,9-PC2AMH contains a seven-coordinate metal ion, seventh coordination being completed by the presence of an inner-sphere water molecule. The structure of the Co(II) complexes was investigated using 1H NMR spectroscopy and computational methods. The complexes present a seven-coordinate structure in solution, as demonstrated by the analysis of the paramagnetic shifts using density functional theory. Ligand protonation constants and stability constants of the complexes with 3,9-PC2AMH were determined using potentiometric titrations (I = 0,15 M NaCl). The Co(II) complex was found to be more stable than the Ni(II) analogue (log KCoL = 14.46(5) and log KNiL = 13.15(3)). However, the Ni(II) and Co(II) complexes display similar rate constants characterizing the proton-assisted dissociation mechanism. The presence of highly shifted 1H NMR signals due to the amide protons in slow exchange with bulk water results in sizeable CEST signals, which are observed at +67 and +15 ppm for the Co(II) complex with 3,9-PC2AMH and +42 and +7 ppm for the Ni(II) analogue at 25 °C.

2.
Molecules ; 25(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138207

RESUMO

Bridged polymacrocyclic ligands featured by structurally different cages offer the possibility of coordinating multiple trivalent lanthanide ions, giving rise to the exploitation of their different physicochemical properties, e.g., multimodal detection for molecular imaging purposes. Intrigued by the complementary properties of optical and MR-based image capturing modalities, we report the synthesis and characterization of the polymetallic Ln(III)-based chelate comprised of two DOTA-amide-based ligands (DOTA-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bridged via 1,10-diaza-18-crown-6 (DA18C6) motif. The DOTA-amide moieties and the DA18C6 were used to chelate two Eu(III) ions and one Tb(III) ion, respectively, resulting in a multinuclear heterometallic complex Eu2LTb. The bimetallic complex without Tb(III), Eu2L, displayed a strong paramagnetic chemical exchange saturation transfer (paraCEST) effect. Notably, the luminescence spectra of Eu2LTb featured mixed emission including the characteristic bands of Eu(III) and Tb(III). The advantageous features of the complex Eu2LTb opens new possibilities for the future design of bimodal probes and their potential applicability in CEST MR and optical imaging.


Assuntos
Quelantes , Meios de Contraste , Éteres de Coroa/química , Imagem Molecular , Sondas Moleculares , Quelantes/síntese química , Quelantes/química , Meios de Contraste/síntese química , Meios de Contraste/química , Sondas Moleculares/síntese química , Sondas Moleculares/química
3.
Chem Soc Rev ; 49(17): 6169-6185, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32701076

RESUMO

Yttrium is a chemically versatile rare earth element that finds use in a range of applications including lasers and superconductors. In medicine, yttrium-based materials are used in medical lasers and biomedical implants. This is extended through the array of available yttrium isotopes to enable roles for 90Y complexes as radiopharmaceuticals and 86Y tracers for positron emission tomography (PET) imaging. The naturally abundant isotope 89Y is proving to be suitable for nuclear magnetic resonance investigations, where initial reports in the emerging field of hyperpolarised magnetic resonance imaging (MRI) are promising. In this review we explore the coordination and radiochemical properties of yttrium, and its role in drugs for radiotherapy, PET imaging agents and perspectives for applications in hyperpolarised MRI.


Assuntos
Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Ítrio/farmacologia , Humanos , Compostos Radiofarmacêuticos , Ítrio/química
4.
Inorg Chem ; 58(20): 13619-13630, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31136161

RESUMO

Thanks to their versatile magnetic and luminescence features, lanthanide complexes have gained a central position in biomedical imaging as magnetic resonance imaging (MRI) contrast agents and optical imaging probes. In addition, appropriate chemical design allows modification of the magnetic relaxation properties of GdIII complexes and the optical properties of visible- or near-infrared (NIR)-emitting lanthanide chelates upon interaction with various biomarkers, which makes them ideal candidates for the creation of responsive agents. In this Forum Article, we demonstrate such design principles as well as the difficulties encountered in the context of neurotransmitter (NT) detection. Lanthanide(III) complexes of a macrocyclic ligand incorporating a benzophenone chromophore and a monoazacrown ether (LnL3) have been synthesized as responsive probes to monitor amino acid NTs either in MRI (Ln = Gd) or in NIR optical detection (Ln = Nd or Yb). The parameters characterizing the water exchange and rotational dynamics of the gadolinium(III) complex were assessed by 17O NMR and 1H NMRD. In the presence of zwitterionic NTs, the inner-sphere water molecule is replaced by the carboxylate function of the NTs in the gadolinium(III) complex, leading to a decrease of the longitudinal relaxivity from 6.7 to 2-2.5 mM-1 s-1 (300 MHz and 37 °C). The apparent affinity constants range from Ka = 35 for γ-aminobutyric acid (GABA) to 80 M-1 for glycine and glutamate, and there is no selectivity with respect to hydrogen carbonate (Ka = 232; pH 7.4). The gadolinium(III) complex interacts with human serum albumin (HSA), resulting in a 60% increase in the relaxivity (20 MHz, 37 °C) in the absence of NTs. The HSA-bound complex, however, was revealed to be less responsive to NTs because of displacement of the GdIII-bound water by HSA, which was confirmed by the hydration number calculated from luminescence lifetimes of the HSA-bound europium(III) complex. The creation of an imaging agent suitable for NIR detection of NTs for an enhanced sensitivity in biological systems using the benzophenone (BP) moiety as the sensitizer of lanthanide luminescence was also attempted. Upon excitation at 300 nm of the BP chromophore in aqueous solutions of NdL3 and YbL3, characteristic NIR emissions of NdIII and YbIII were observed because of 4F3/2 → 4IJ (J = 9/2-13/2) and 2F5/2 → 2F7/2 transitions, respectively, indicating that this chromophore is a suitable antenna. Despite these promising results, luminescence titrations of NdIII and YbIII complexes with NTs were not conclusive because of chemical conversion of the ligand triggered by light, preventing quantitative analysis. The observed photochemical reaction of the ligand is strongly dependent on the nature of the lanthanide chelated; it is considerably slowed down in the presence of NdIII and EuIII.

5.
Br J Radiol ; 92(1093): 20180365, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30226413

RESUMO

AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been observed with different types of irradiations in vitro and in vivo on a large number of cancer types (brain, lung, melanoma, head and neck…). The review concludes with the second generation of AGuIX nanoparticles and the first preliminary results on human.


Assuntos
Gadolínio/administração & dosagem , Nanopartículas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Previsões , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Melanoma/patologia , Melanoma/terapia , Camundongos , Nanomedicina Teranóstica/tendências
6.
ACS Chem Neurosci ; 6(2): 219-25, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25496344

RESUMO

Molecular magnetic resonance imaging (MRI) approaches that detect biomarkers associated with neural activity would allow more direct observation of brain function than current functional MRI based on blood-oxygen-level-dependent contrast. Our objective was to create a synthetic molecular platform with appropriate recognition moieties for zwitterionic neurotransmitters that generate an MR signal change upon neurotransmitter binding. The gadolinium complex (GdL) we report offers ditopic binding for zwitterionic amino acid neurotransmitters, via interactions (i) between the positively charged and coordinatively unsaturated metal center and the carboxylate function and (ii) between a triazacrown ether and the amine group of the neurotransmitters. GdL discriminates zwitterionic neurotransmitters from monoamines. Neurotransmitter binding leads to a remarkable relaxivity change, related to a decrease in hydration number. GdL was successfully used to monitor neural activity in ex vivo mouse brain slices by MRI.


Assuntos
Meios de Contraste , Éteres de Coroa , Gadolínio , Imageamento por Ressonância Magnética/métodos , Neurotransmissores/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fármacos do Sistema Nervoso Central/farmacologia , Meios de Contraste/síntese química , Meios de Contraste/química , Éteres de Coroa/síntese química , Éteres de Coroa/química , Feminino , Gadolínio/química , Imageamento Tridimensional/métodos , Camundongos , Neurotransmissores/química , Cloreto de Potássio/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Técnicas de Cultura de Tecidos
7.
J Med Chem ; 49(13): 3790-9, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16789736

RESUMO

Mixed tetraoxanes 5a and 13 synthesized from cholic acid and 4-oxocyclohexanecarboxylic acid were as active as artemisinin against chloroquine-susceptible, chloroquine-resistant, and multidrug-resistant Plasmodium falciparum strains (IC50, IC90). Most active 13 is metabolically stable in in vitro metabolism studies. In vivo studies on tetraoxanes with a C(4' ') methyl group afforded compound 15, which cured 4/5 mice at 600 and 200 mg.kg-1.day-1, and 2/5 mice at 50 mg.kg-1.day-1, showing no toxic effects. Tetraoxane 19 was an extremely active antiproliferative with LC50 of 17 nM and maximum tolerated dose of 400 mg/kg. In Fe(II)-induced scission of tetraoxane antimalarials only RO* radicals were detected by EPR experiments. This finding and the indication of Fe(IV)=O species led us to propose that RO* radicals are probably capable of inducing the parasite's death. Our results suggest that C radicals are possibly not the only lethal species derived from peroxide prodrug antimalarials, as currently believed.


Assuntos
Antimaláricos/síntese química , Compostos Ferrosos/química , Tetraoxanos/síntese química , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Humanos , Técnicas In Vitro , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tetraoxanos/química , Tetraoxanos/farmacologia
8.
Bioorg Med Chem ; 11(13): 2761-8, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12788350

RESUMO

Several cis and trans bis-steroidal 1,2,4,5-tetraoxanes possessing amide terminus were synthesised and evaluated as antimalarials and antiproliferatives. The compounds exhibited submicromolar antimalarial activity against Plasmodium falciparum D6 and W2 strains. The existence of HN-C(O) moiety was found necessary for pronounced antimalarial and antiproliferative activity. In antiproliferative screen, the trans tetraoxane 6 was found to exhibit a pronounced cytotoxicity on 14 cancer cell lines. In addition, tetraoxanes 11 and 12 exhibited significant cytotoxic activity too; microscopic examination of treated HeLa cells showed morphological appearance reminiscent for apoptosis (condensed and/or fragmented nuclei).


Assuntos
Antimaláricos/síntese química , Antineoplásicos/síntese química , Tetraoxanos/farmacologia , Animais , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células HL-60 , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Tetraoxanos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA