Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36055874

RESUMO

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adjuvantes Imunológicos/efeitos adversos , Adulto , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
2.
AMB Express ; 9(1): 167, 2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31630257

RESUMO

Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. "Codon harmonization" more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.

3.
Front Immunol ; 8: 1284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123514

RESUMO

Epstein-Barr virus (EBV) is a necessary cause of endemic Burkitt lymphoma (eBL), while the role of Plasmodium falciparum in eBL remains uncertain. This study aimed to generate new hypotheses on the interplay between both infections in the development of eBL by investigating the IgG and IgM profiles against several EBV and P. falciparum antigens. Serum samples collected in a childhood study in Malawi (2005-2006) from 442 HIV-seronegative children (271 eBL cases and 171 controls) between 1.4 and 15 years old were tested by quantitative suspension array technology against a newly developed multiplex panel combining 4 EBV antigens [Z Epstein-Barr replication activator protein (ZEBRA), early antigen-diffuse component (EA-D), EBV nuclear antigen 1, and viral capsid antigen p18 subunit (VCA-p18)] and 15 P. falciparum antigens selected for their immunogenicity, role in malaria pathogenesis, and presence in different parasite stages. Principal component analyses, multivariate logistic models, and elastic-net regressions were used. As expected, elevated levels of EBV IgG (especially against the lytic antigens ZEBRA, EA-D, and VCA-p18) were strongly associated with eBL [high vs low tertile odds ratio (OR) = 8.67, 95% confidence interval (CI) = 4.81-15.64]. Higher IgG responses to the merozoite surface protein 3 were observed in children with eBL compared with controls (OR = 1.29, 95% CI = 1.02-1.64), showing an additive interaction with EBV IgGs (OR = 10.6, 95% CI = 5.1-22.2, P = 0.05). Using elastic-net regression models, eBL serological profile was further characterized by lower IgM levels against P. falciparum preerythrocytic-stage antigen CelTOS and EBV lytic antigen VCA-p18 compared with controls. In a secondary analysis, abdominal Burkitt lymphoma had lower IgM to EBV and higher IgG to EA-D levels than cases with head involvement. Overall, this exploratory study confirmed the strong role of EBV in eBL and identified differential IgG and IgM patterns to erythrocytic vs preerythrocytic P. falciparum antigens that suggest a more persistent/chronic malaria exposure and a weaker IgM immune response in children with eBL compared with controls. Future studies should continue exploring how the malaria infection status and the immune response to P. falciparum interact with EBV infection in the development of eBL.

4.
PLoS One ; 12(2): e0171826, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182750

RESUMO

Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites.


Assuntos
Quimioprevenção/métodos , Imunização/métodos , Memória Imunológica , Fígado/imunologia , Malária/prevenção & controle , Plasmodium/imunologia , Esporozoítos/imunologia , Animais , Anopheles/parasitologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Macaca mulatta , Malária/imunologia , Plasmodium/crescimento & desenvolvimento , Plasmodium/patogenicidade
5.
PLoS One ; 8(2): e55571, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457473

RESUMO

BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. TRIAL REGISTRATION: ClinicalTrials.govNCT00870987.


Assuntos
Adenovírus Humanos/genética , Antígenos de Protozoários/genética , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacinas de DNA/uso terapêutico , Adenovírus Humanos/imunologia , Adolescente , Adulto , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunidade Celular , Interferon gama/imunologia , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/efeitos adversos , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Adulto Jovem
6.
Vaccine ; 23(17-18): 2243-50, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15755604

RESUMO

The goal of the Malaria Vaccine Program at the Walter Reed Army Institute of Research (WRAIR) is to develop a licensed multi-antigen, multi-stage vaccine against Plasmodium falciparum able to prevent all symptomatic manifestations of malaria by preventing parasitemia. A secondary goal is to limit disease in vaccinees that do develop malaria. Malaria prevention will be achieved by inducing humoral and cellular immunity against the pre-erythrocytic circumsporozoite protein (CSP) and the liver stage antigen-1 (LSA-1). The strategy to limit disease will target immune responses against one or more blood stage antigens, merozoite surface protein-1 (MSP-1) and apical merozoite antigen-1 (AMA-1). The induction of T- and B-cell memory to achieve a sustained vaccine response may additionally require immunization with an adenovirus vector such as adenovirus serotype 35. RTS,S, a CSP-derived antigen developed by GlaxoSmithKline Biologicals in collaboration with the Walter Reed Army Institute of Research over the past 17 years, is the cornerstone of our program. RTS,S formulated in AS02A (a GSK proprietary formulation) is the only vaccine candidate shown in field trials to prevent malaria and, in one instance, to limit disease severity. Our vaccine development plan requires proof of an individual antigen's efficacy in a Phase 2 laboratory challenge or field trial prior to its integration into an RTS,S-based, multi-antigen vaccine. Progress has been accelerated through extensive partnerships with industrial, academic, governmental, and non-governmental organizations. Recent safety, immunogenicity, and efficacy trials in the US and Africa are presented, as well as plans for the development of a multi-antigen vaccine.


Assuntos
Vacinas Antimaláricas/isolamento & purificação , Plasmodium falciparum/imunologia , Academias e Institutos , Adenoviridae/genética , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/isolamento & purificação , Ensaios Clínicos como Assunto , Vetores Genéticos , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/farmacologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/genética , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Estados Unidos
7.
Vaccine ; 22(29-30): 3831-40, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15364429

RESUMO

We compared the safety and immunogenicity of the recombinant Plasmodium falciparum MSP1(42) antigen formulated with four novel adjuvant systems (AS01B, AS02A, AS05 and AS08) to alum in rhesus monkeys. All five formulations of MSP1(42) were safe and immunogenic. Whereas, all MSP1(42) formulations tested generated high stimulation indices for lymphocyte proliferation (ranging from 27 to 50), the AS02A and AS01B formulations induced the highest levels of specific anti-MSP1(42) antibody. ELISPOT assays showed that the AS02A and AS01B vaccine formulations-induced different cytokine response profiles. Using the ratio of IFN-gamma/IL-5 secreting cells as the metric, the AS01B formulation induced a strong Th1 response, whereas the AS02A formulation induced a balanced Th1/Th2 response. The IFN-gamma response generated by AS02A and AS01B formulations persisted at least 24 weeks after final vaccination. The notable difference in Th1/Th2 polarization induced by the AS02A and AS01B formulations warrants comparative clinical testing.


Assuntos
Adjuvantes Imunológicos , Vacinas Antimaláricas/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium falciparum/imunologia , ADP-Ribosil Ciclase/análise , ADP-Ribosil Ciclase 1 , Compostos de Alúmen , Animais , Anticorpos Antiprotozoários/sangue , Antígenos CD/análise , Antígenos CD40/análise , Citocinas/análise , Células Dendríticas/imunologia , Células Dendríticas/fisiologia , Avaliação Pré-Clínica de Medicamentos , Memória Imunológica , Interferon gama/análise , Interleucina-5/análise , Ativação Linfocitária , Macaca mulatta , Vacinas Antimaláricas/toxicidade , Proteína 1 de Superfície de Merozoito/efeitos adversos , Linfócitos T/imunologia , Fatores de Tempo , Vacinação , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/toxicidade
8.
J Biol Chem ; 278(48): 47670-7, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-13679371

RESUMO

Malarial merozoites invade erythrocytes; and as an essential step in this invasion process, the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP142) is further cleaved to a 33-kDa N-terminal polypeptide (MSP133) and an 19-kDa C-terminal fragment (MSP119) in a secondary processing step. Suramin was shown to inhibit both merozoite invasion and MSP142 proteolytic cleavage. This polysulfonated naphthylurea bound directly to recombinant P. falciparum MSP142 (Kd = 0.2 microM) and to Plasmodium vivax MSP142 (Kd = 0.3 microM) as measured by fluorescence enhancement in the presence of the protein and by isothermal titration calorimetry. Suramin bound only slightly less tightly to the P. vivax MSP133 (Kd = 1.5 microM) secondary processing product (fluorescence measurements), but very weakly to MSP119 (Kd approximately 15 mM) (NMR measurements). Several residues in MSP119 were implicated in the interaction with suramin using NMR measurements. A series of symmetrical suramin analogues that differ in the number of aromatic rings and substitution patterns of the terminal naphthylamine groups was examined in invasion and processing assays. Two classes of analogue with either two or four bridging rings were found to be active in both assays, whereas two other classes without bridging rings were inactive. We propose that suramin and related compounds inhibit erythrocyte invasion by binding to MSP1 and by preventing its cleavage by the secondary processing protease. The results indicate that enzymatic events during invasion are suitable targets for drug development and validate the novel concept of an inhibitor binding to a macromolecular substrate to prevent its proteolysis by a protease.


Assuntos
Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium falciparum/metabolismo , Suramina/análogos & derivados , Suramina/química , 2-Naftilamina/química , Animais , Antiprotozoários/farmacologia , Western Blotting , Calorimetria , Relação Dose-Resposta a Droga , Endopeptidases/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Plasmodium vivax , Ligação Proteica , Espectrometria de Fluorescência , Temperatura , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA