Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833989

RESUMO

Differentiated thyroid cancer is the most common malignancy of the endocrine system. Although most thyroid nodules are benign, given the high incidence of thyroid nodules in the population, it is important to understand the differences between benign and malignant thyroid cancer and the molecular alterations associated with malignancy to improve detection and signal potential diagnostic, prognostic, and therapeutic targets. Proteomics analysis of benign and malignant human thyroid tissue largely revealed changes indicating modifications in RNA regulation, a common cancer characteristic. In addition, changes in the immune system and cell membrane/endocytic processes were also suggested to be involved. Annexin A1 was considered a potential malignancy biomarker and, similarly to other annexins, it was found to increase in the malignant group. Furthermore, a bioinformatics approach points to the transcription factor Sp1 as being potentially involved in most of the alterations seen in the malignant thyroid nodules.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Anexinas/genética , RNA Mensageiro/genética , Proteômica , Neoplasias da Glândula Tireoide/patologia
2.
Stem Cell Rev Rep ; 19(1): 248-263, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152233

RESUMO

Mesenchymal stem cells (MSCs) hold promising therapeutic potential in several clinical applications, mainly due to their paracrine activity. The implementation of future secretome-based therapeutic strategies requires the use of easily accessible MSCs sources that provide high numbers of cells with homogenous characteristics. MSCs obtained from induced pluripotent stem cells (iMSCs) have been put forward as an advantageous alternative to the gold-standard tissue sources, such as bone marrow (BM-MSCs). In this study, we aimed at comparing the secretome of BM-MSCs and iMSCs over long-term culture. For that, we performed a broad characterization of both sources regarding their identity, proteomic secretome analysis, as well as replicative senescence and associated phenotypes, including its effects on MSCs secretome composition and immunomodulatory action. Our results evidence a rejuvenated phenotype of iMSCs, which is translated into a superior proliferative capacity before the induction of replicative senescence. Despite this significant difference between iMSCs and BM-MSCs proliferation, both untargeted and targeted proteomic analysis revealed a similar secretome composition for both sources in pre-senescent and senescent states. These results suggest that shifting from the use of BM-MSCs to a more advantageous source, like iMSCs, may yield similar therapeutic effects as identified over the past years for this gold-standard MSC source.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Diferenciação Celular , Proteômica , Secretoma , Senescência Celular
3.
Cell Tissue Res ; 390(2): 207-227, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36083358

RESUMO

In echinoderms, the coelomic epithelium (CE) is reportedly the source of new circulating cells (coelomocytes) as well as the provider of molecular factors such as immunity-related molecules. However, its overall functions have been scarcely studied in detail. In this work, we used an integrated approach based on both microscopy (light and electron) and proteomic analyses to investigate the arm CE in the starfish Marthasterias glacialis during different physiological conditions (i.e., non-regenerating and/or regenerating). Our results show that CE cells share both ultrastructural and proteomic features with circulating coelomocytes (echinoderm immune cells). Additionally, microscopy and proteomic analyses indicate that CE cells are actively involved in protein synthesis and processing, and membrane trafficking processes such as phagocytosis (particularly of myocytes) and massive secretion phenomena. The latter might provide molecules (e.g., immune factors) and fluids for proper arm growth/regrowth. No stem cell marker was identified and no pre-existing stem cell was observed within the CE. Rather, during regeneration, CE cells undergo dedifferentiation and epithelial-mesenchymal transition to deliver progenitor cells for tissue replacement. Overall, our work underlines that echinoderm CE is not a "simple epithelial lining" and that instead it plays multiple functions which span from immunity-related roles as well as being a source of regeneration-competent cells for arm growth/regrowth.


Assuntos
Equinodermos , Proteômica , Animais , Epitélio/ultraestrutura , Estrelas-do-Mar , Células Epiteliais
4.
Mar Drugs ; 20(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447897

RESUMO

The vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue-greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.


Assuntos
Anelídeos , Poliquetos , Animais , Biotecnologia , Corantes/metabolismo , Humanos , Muco/química , Extratos Vegetais/análise , Poliquetos/química , Proteínas/análise
5.
Redox Biol ; 51: 102283, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303520

RESUMO

Efforts have been made to understand the physiological and pathological role of DJ-1, a Parkinson's disease (PD)-associated protein, to provide new insights into PD pathophysiology. Such studies have revealed several neuroprotective roles of DJ-1, from which its ability to modulate signaling pathways seems to be of utmost importance for cell death regulation by DJ-1. Indeed, research on these topics has led to a higher number of publications disclosing a variety of mechanisms through which DJ-1 is able to modulate signaling pathways in distinct disease-related contexts. Thus, this graphical review presents the most relevant findings concerning the mechanisms through which DJ-1 exerts its regulatory activity on signaling cascades relevant for DJ-1 neuroprotective action, namely ERK1/2, PI3K/Akt, and ASK1 pathways, and Nrf2 and p53 transcription factors-related signaling. A greater focus was given to perform an overview of the research interests over the last years, especially in the most recent works, to highlight the current research lines in this topic, and point out future directions in the field. In addition, the impact of DJ-1 mutations causative of PD and the importance of the redox status of DJ-1's cysteine residues for the action of DJ-1 on signaling modulation was also addressed to uncover the potential pathological mechanisms associated with loss of DJ-1 native function.


Assuntos
Estresse Oxidativo , Doença de Parkinson , Morte Celular , Humanos , Doença de Parkinson/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Transdução de Sinais
6.
Cell Mol Life Sci ; 77(7): 1371-1386, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31346634

RESUMO

FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , RNA não Traduzido/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Gatos , Núcleo Celular/metabolismo , Proliferação de Células , Células HeLa , Humanos , Modelos Biológicos , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Satélite/genética , RNA Satélite/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a Hormônio da Tireoide
7.
Artigo em Inglês | MEDLINE | ID: mdl-31737616

RESUMO

Parkinson's disease (PD) is characterized by a selective loss of dopamine (DA) neurons in the human midbrain causing motor dysfunctions. The exact mechanism behind dopaminergic cell death is still not completely understood and, so far, no cure or neuroprotective treatment for PD is available. Recent studies have brought attention to the variety of bioactive molecules produced by mesenchymal stem cells (MSCs), generally referred to as the secretome. Herein, we evaluated whether human MSCs-bone marrow derived (hBMSCs) secretome would be beneficial in a PD pre-clinical model, when compared directly with cell transplantation of hBMSCs alone. We used a 6-hydroxydpomanie (6-OHDA) rat PD model, and motor behavior was evaluated at different time points after treatments (1, 4, and 7 weeks). The impact of the treatments in the recovery of DA neurons was estimated by determining TH-positive neuronal densities in the substantia nigra and fibers in the striatum, respectively, at the end of the behavioral characterization. Furthermore, we determined the effect of the hBMSCs secretome on the neuronal survival of human neural progenitors in vitro, and characterized the secretome through proteomic-based approaches. This work demonstrates that the injection of hBMSCs secretome led to the rescue of DA neurons, when compared to transplantation of hBMSCs themselves, which can explain the recovery of secretome-injected animals' behavioral performance in the staircase test. Moreover, we observed that hBMSCs secretome induces higher levels of in vitro neuronal differentiation. Finally, the proteomic analysis revealed that hBMSCs secrete important exosome-related molecules, such as those related with the ubiquitin-proteasome and histone systems. Overall, this work provided important insights on the potential use of hBMSCs secretome as a therapeutic tool for PD, and further confirms the importance of the secreted molecules rather than the transplantation of hBMSCs for the observed positive effects. These could be likely through normalization of defective processes in PD, namely proteostasis or altered gene transcription, which lately can lead to neuroprotective effects.

8.
Methods Mol Biol ; 2044: 169-189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432413

RESUMO

Mass spectrometry (MS) has become the gold standard method for proteomics by allowing the simultaneous identification and/or quantification of thousands of proteins of a given sample. Over time, mass spectrometry has evolved into newer quantitative approaches with increased sensitivity and accuracy, such as the sequential windows acquisition of all theoretical fragment-ion spectra (SWATH)-MS approach. Moreover, in the past few years, some improvements were made in the SWATH-acquisition algorithm, allowing the design of sample-customized acquisition methods by adjusting the Q1 windows' width in order to reduce it in the most populated m/z regions. This customization results in an increase in the specificity and a reduction in the interferences, ultimately leading to an improvement in the amount of quantitative data extracted to eventually increase the proteome coverage. These improvements are especially relevant for clinical neuroproteomics, which is mainly based on the analysis of circulatory biofluids, in particular the cerebrospinal fluid (CSF) due to its close connection with the brain.In the present chapter, a detailed description of the methodologies necessary to perform a whole-proteome relative quantification of CSF samples by SWATH-MS is presented, starting with the isolation of the protein fraction, its preparation for MS analysis, with all the necessary information for the design of a SWATH-MS method specific for each sample batch, and finally providing different methodologies for the analysis of the quantitative data obtained.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Cromatografia Líquida/métodos , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Proteínas do Líquido Cefalorraquidiano/química , Proteínas do Líquido Cefalorraquidiano/isolamento & purificação , Humanos , Íons/química , Peptídeos/líquido cefalorraquidiano , Peptídeos/química , Peptídeos/isolamento & purificação , Proteólise , Proteoma/química , Ratos , Software
9.
Vet Immunol Immunopathol ; 213: 109880, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31307669

RESUMO

Haemorrhagic enteritis (HE) is a viral disease affecting intestinal integrity and barrier function in turkey (Meleagris gallopavo) and resulting in a significant economic loss. Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH-MS) was applied to identify crucial proteins involved in HE infection. A total of 938 proteins were identified and used to generate a reference library for SWATH-MS analysis. In total, 523 proteins were reliably quantified, and 64 proteins were found to be differentially expressed, including 49 up-regulated and 15 down-regulated proteins between healthy and HE-affected intestinal mucosa. Functional analysis suggested that these proteins were involved in the following categories of cellular pathways and metabolisms: 1) energy pathways; 2) intestine lipid and amino acid metabolism; 3) oxidative stress; 4) intestinal immune response. Major findings of this study demonstrated that natural HE infection is related to the changes in abundance of several proteins involved in cell-intrinsic immune defense against viral invasion, systemic inflammation, modulation of excessive inflammation, B and T cell development and function and antigen presentation. mRNA quantitative expression demonstrated that most of the proteins involved in innate immunity that were found to be differentially abundant were produced by intestinal mucosa, suggesting its direct involvement in immune defences against HE infection.


Assuntos
Infecções por Adenoviridae/veterinária , Mucosa Intestinal/metabolismo , Proteoma , Siadenovirus , Perus/virologia , Infecções por Adenoviridae/metabolismo , Animais , Regulação para Baixo , Enterite , Feminino , Imunidade Inata , Inflamação , Mucosa Intestinal/virologia , Espectrometria de Massas , Redes e Vias Metabólicas , Proteômica , Regulação para Cima
10.
Redox Biol ; 22: 101130, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30737169

RESUMO

Most of the redox proteomics strategies are focused on the identification and relative quantification of cysteine oxidation without considering the variation in the total levels of the proteins. However, protein synthesis and protein degradation also belong to the regulatory mechanisms of the cells, being therefore important to consider the changes in total protein levels in PTMs-focused analyses, such as cysteine redox characterization. Therefore, a novel integrative approach combining the SWATH-MS method with differential alkylation using a combination of commonly available alkylating reagents (oxSWATH) is presented, by which it is possible to integrate the information regarding relative cysteine oxidation with the analysis of the total protein levels in a cost-effective high-throughput approach. The proposed method was tested using a redox-regulated protein and further applied to a comparative analysis of secretomes obtained from cells cultured under control or oxidative stress conditions to strengthen the importance of considering the overall proteome changes. Using the OxSWATH method it was possible to determine both the relative proportion of reduced and reversible oxidized oxoforms, as well as the total levels of each oxoform by taking into consideration the total levels of the protein. Therefore, using OxSWATH the comparative analyses can be performed at two different levels by considering the relative proportion or the total levels at both peptide and protein level. Moreover, since samples are acquired in SWATH-MS mode, besides the redox centered analysis, a generic differential protein expression analysis can also be performed, allowing a truly comprehensive evaluation of proteomics changes upon the oxidative stimulus. Data are available via ProteomeXchange and SWATHAtlas with the identifiers PXD006802, PXD006802, and PASS01210.

11.
Stem Cells Transl Med ; 7(11): 829-838, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30238668

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder that results from the death of dopamine (DA) neurons. Over recent years, differentiated or undifferentiated neural stem cells (NSCs) transplantation has been widely used as a means of cell replacement therapy. However, compelling evidence has brought attention to the array of bioactive molecules produced by stem cells, defined as secretome. As described in the literature, other cell populations have a high-neurotrophic activity, but little is known about NSCs. Moreover, the exploration of the stem cell secretome is only in its initial stages, particularly as applied to neurodegenerative diseases. Thus, we have characterized the secretome of human neural progenitor cells (hNPCs) through proteomic analysis and investigated its effects in a 6-hydroxidopamine (6-OHDA) rat model of PD in comparison with undifferentiated hNPCs transplantation. Results revealed that the injection of hNPCs secretome potentiated the histological recovery of DA neurons when compared to the untreated group 6-OHDA and those transplanted with cells (hNPCs), thereby supporting the functional motor amelioration of 6-OHDA PD animals. Additionally, hNPCs secretome proteomic characterization has revealed that these cells have the capacity to secrete a wide range of important molecules with neuroregulatory actions, which are most likely support the effects observed. Overall, we have concluded that the use of hNPCs secretome partially modulate DA neurons cell survival and ameliorate PD animals' motor deficits, disclosing improved results when compared to cell transplantation approaches, indicating that the secretome itself could represent a route for new therapeutic options for PD regenerative medicine. Stem Cells Translational Medicine 2018;7:829-838.


Assuntos
Células-Tronco Neurais/transplante , Doença de Parkinson/terapia , Animais , Comportamento Animal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Hidroxidopaminas/toxicidade , Masculino , Espectrometria de Massas , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Proteoma/análise , Ratos , Ratos Wistar , Transplante Heterólogo
12.
Stem Cells ; 36(5): 696-708, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29352743

RESUMO

Patients suffering from spinal cord injury (SCI) still have a dismal prognosis. Despite all the efforts developed in this area, currently there are no effective treatments. Therefore, cell therapies have been proposed as a viable alternative to the current treatments used. Adipose tissue-derived stromal cells (ASCs) and olfactory ensheathing cells (OECs) have been used with promising results in different models of SCI, namely due to the regenerative properties of the secretome of the first, and the guidance capability of the second. Using an in vitro model of axonal growth, the dorsal root ganglia explants, we demonstrated that OECs induce neurite outgrowth mainly through cell-cell interactions, while ASCs' effects are strongly mediated by the release of paracrine factors. A proteomic analysis of ASCs' secretome revealed the presence of proteins involved in VEGF, PI3K, and Cadherin signaling pathways, which may be responsible for the effects observed. Then, the cotransplantation of ASCs and OECs showed to improve motor deficits of SCI-rats. Particular parameters of movement such as stepping, coordination, and toe clearance were improved in rats that received the transplant of cells, in comparison to nontreated rats. A histological analysis of the spinal cord tissues revealed that transplantation of ASCs and OECs had a major effect on the reduction of inflammatory cells close the lesion site. A slight reduction of astrogliosis was also evident. Overall, the results obtained with the present work indicate that the cotransplantation of ASCs and OECs brings important functional benefits to the injured spinal cord. Stem Cells 2018;36:696-708.


Assuntos
Tecido Adiposo/citologia , Bulbo Olfatório/citologia , Traumatismos da Medula Espinal/terapia , Células Estromais/citologia , Animais , Células Cultivadas , Feminino , Humanos , Regeneração Nervosa/fisiologia , Ratos Wistar , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células Estromais/fisiologia
13.
J Transl Med ; 15(1): 200, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969635

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. METHODS: The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. RESULTS: We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. CONCLUSIONS: These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioblastoma/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Temozolomida
14.
Cell Commun Signal ; 15(1): 37, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969644

RESUMO

BACKGROUND: Glioblastoma (GBM), the most malignant primary brain tumor, leads to poor and unpredictable clinical outcomes. Recent studies showed the tumor microenvironment has a critical role in regulating tumor growth by establishing a complex network of interactions with tumor cells. In this context, we investigated how GBM cells modulate resident glial cells, particularly their paracrine activity, and how this modulation can influence back on the malignant phenotype of GBM cells. METHODS: Conditioned media (CM) of primary mouse glial cultures unexposed (unprimed) or exposed (primed) to the secretome of GL261 GBM cells were analyzed by proteomic analysis. Additionally, these CM were used in GBM cells to evaluate their impact in glioma cell viability, migration capacity and activation of tumor-related intracellular pathways. RESULTS: The proteomic analysis revealed that the pre-exposure of glial cells to CM from GBM cells led to the upregulation of several proteins related to inflammatory response, cell adhesion and extracellular structure organization within the secretome of primed glial cells. At the functional levels, CM derived from unprimed glial cells favored an increase in GBM cell migration capacity, while CM from primed glial cells promoted cells viability. These effects on GBM cells were accompanied by activation of particular intracellular cancer-related pathways, mainly the MAPK/ERK pathway, which is a known regulator of cell proliferation. CONCLUSIONS: Together, our results suggest that glial cells can impact on the pathophysiology of GBM tumors, and that the secretome of GBM cells is able to modulate the secretome of neighboring glial cells, in a way that regulates the "go-or-grow" phenotypic switch of GBM cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/metabolismo , Neuroglia/metabolismo , Fenótipo , Proteoma/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Comunicação Parácrina
15.
Sci Rep ; 6: 39007, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941947

RESUMO

The pinewood nematode, Bursaphelenchus xylophilus, recognized as a worldwide major forest pest, is a migratory endoparasitic nematode with capacity to feed on pine tissues and also on fungi colonizing the trees. Bursaphelenchus mucronatus, the closest related species, differs from B. xylophilus on its pathogenicity, making this nematode a good candidate for comparative analyses. Secretome profiles of B. xylophilus and B. mucronatus were obtained and proteomic differences were evaluated by quantitative SWATH-MS. From the 681 proteins initially identified, 422 were quantified and compared between B. xylophilus and B. mucronatus secretomes and from these, 243 proteins were found differentially regulated: 158 and 85 proteins were increased in B. xylophilus and B. mucronatus secretomes, respectively. While increased proteins in B. xylophilus secretome revealed a strong enrichment in proteins with peptidase activity, the increased proteins in B. mucronatus secretome were mainly related to oxidative stress responses. The changes in peptidases were evaluated at the transcription level by RT-qPCR, revealing a correlation between the mRNA levels of four cysteine peptidases with secretion levels. The analysis presented expands our knowledge about molecular basis of B. xylophilus and B. mucronatus hosts interaction and supports the hypothesis of a key role of secreted peptidases in B. xylophilus pathogenicity.


Assuntos
Nematoides/genética , Nematoides/metabolismo , Animais , Ontologia Genética , Estresse Oxidativo , Proteômica , Transcriptoma
16.
Sci Rep ; 6: 27791, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301770

RESUMO

In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.


Assuntos
Reatores Biológicos , Diferenciação Celular , Computadores , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Proteoma/metabolismo , Animais , Células da Medula Óssea/citologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Injeções , Masculino , Espectrometria de Massas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Proteômica , Ratos Wistar
17.
Methods Mol Biol ; 1416: 521-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236694

RESUMO

The modulatory and regenerative potential shown by the use of MSC secretomes has emphasized the importance of their proteomics profiling. Proteomic analysis, initially focused on the targeted analysis of some candidate proteins or the identification of the secreted proteins, has been changing to an untargeted profiling also based on the quantitative evaluation of the secreted proteins.The study of the secretome can be accomplished through several different proteomics-based approaches; however this analysis must overcome one key challenge of secretome analysis: the low amount of secreted proteins and usually their high dilution.In this chapter, a general workflow for the untargeted proteomic profile of MSC's secretome is presented, in combination with a comprehensive description of the major techniques/procedures that can be used. Special focus is given to the main procedures to obtain the secreted proteins, from secretome concentration by ultrafiltration to protein precipitation. Lastly, different proteomics-based approaches are presented, emphasizing alternative digestion techniques and available mass spectrometry-based quantitative methods.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Células Cultivadas , Cromatografia Líquida , Meios de Cultivo Condicionados/isolamento & purificação , Células-Tronco Mesenquimais/citologia , Espectrometria de Massas em Tandem
18.
Stem Cells Dev ; 25(14): 1073-83, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226274

RESUMO

The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Cordão Umbilical/irrigação sanguínea , Cordão Umbilical/citologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Citoproteção/efeitos dos fármacos , Humanos , Espectrometria de Massas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos
19.
PLoS One ; 8(12): e82095, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312632

RESUMO

The mitochondrion is emerging as a key organelle in stem cell biology, acting as a regulator of stem cell pluripotency and differentiation. In this study we sought to understand the effect of mitochondrial complex III inhibition during neuronal differentiation of mouse embryonic stem cells. When exposed to antimycin A, a specific complex III inhibitor, embryonic stem cells failed to differentiate into dopaminergic neurons, maintaining high Oct4 levels even when subjected to a specific differentiation protocol. Mitochondrial inhibition affected distinct populations of cells present in culture, inducing cell loss in differentiated cells, but not inducing apoptosis in mouse embryonic stem cells. A reduction in overall proliferation rate was observed, corresponding to a slight arrest in S phase. Moreover, antimycin A treatment induced a consistent increase in HIF-1α protein levels. The present work demonstrates that mitochondrial metabolism is critical for neuronal differentiation and emphasizes that modulation of mitochondrial functions through pharmacological approaches can be useful in the context of controlling stem cell maintenance/differentiation.


Assuntos
Antimicina A/farmacologia , Diferenciação Celular/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Células-Tronco Embrionárias/citologia , Inibidores Enzimáticos/farmacologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Nucleotídeos de Adenina/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA