Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 110: 104520, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067718

RESUMO

Elevated airborne PCB levels in older schools are concerning due to their health impacts, including cancer, metabolic dysfunction-associated steatotic liver disease (MASLD), cardiovascular issues, neurodevelopmental diseases, and diabetes. During a four-week inhalation exposure to PCB52, an air pollutant commonly found in school environments, adolescent rats exhibited notable presence of PCB52 and its hydroxylated forms in their livers, alongside changes in gene expression. Female rats exhibited more pronounced changes in gene expression compared to males, particularly in fatty acid synthesis genes regulated by the transcription factor SREBP1. In vitro studies with human liver cells showed that the hydroxylated metabolite of PCB52, 4-OH-PCB52, but not the parent compound, upregulated genes involved in fatty acid biosynthesis similar to in vivo exposure. These findings highlight the sex-specific effects of PCB52 exposure on livers, particularly in females, suggesting a potential pathway for increased MASLD susceptibility.


Assuntos
Ácidos Graxos , Exposição por Inalação , Fígado , Bifenilos Policlorados , Regulação para Cima , Animais , Feminino , Bifenilos Policlorados/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Regulação para Cima/efeitos dos fármacos , Ácidos Graxos/metabolismo , Humanos , Poluentes Atmosféricos/toxicidade , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
2.
Toxicology ; 500: 153677, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995827

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that ubiquitously exist in the environment. PCB exposure has been linked to cancer and multi-system toxicity, including endocrine disruption, immune inhibition, and reproductive and neurotoxicity. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) is one of the most frequently detected congeners in the environment and human blood. The hydroxylated metabolites of PCB 52 may also be neurotoxic, especially for children whose brains are still developing. However, it is challenging to discern the contribution of these metabolites to PCB neurotoxicity because the metabolism of PCB is species-dependent. In this study, we evaluated the subacute neurotoxicity of a human-relevant metabolite, 2,2',5,5'-tetrachlorobiphenyl-4-ol (4-52), on male adolescent Sprague Dawley rats, via a novel polymeric implant drug delivery system grafted subcutaneously, at total loading concentrations ranging from 0%, 1%, 5%, and 10% of the implant (w/w) for 28 days. Y-maze, hole board test, open field test, and elevated plus maze were performed on exposure days 24-28 to assess their locomotor activity, and exploratory and anxiety-like behavior. 4-52 and other possible hydroxylated metabolites in serum and vital tissues were quantified using gas chromatography with tandem mass spectrometry (GC-MS/MS). Our results demonstrate the sustained release of 4-52 from the polymeric implants into the systemic circulation in serum and tissues. Dihydroxylated and dechlorinated metabolites were detected in serum and tissues, depending on the dose and tissue type. No statistically significant changes were observed in the neurobehavioral tasks across all exposure groups. The results demonstrate that subcutaneous polymeric implants provide a straightforward method to expose rats to phenolic PCB metabolites to study neurotoxic outcomes, e.g., in memory, anxiety, and exploratory behaviors.


Assuntos
Neoplasias , Síndromes Neurotóxicas , Bifenilos Policlorados , Criança , Ratos , Humanos , Masculino , Adolescente , Animais , Bifenilos Policlorados/química , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Síndromes Neurotóxicas/etiologia
3.
Data Brief ; 49: 109415, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520642

RESUMO

Polychlorinated biphenyls (PCBs) were used extensively in building materials, including those used in schools. PCBs accumulate in fat, and exposure to PCBs is associated with the development of cancer, neurodevelopmental disorders, cardiovascular disease, obesity, and diabetes. The non-dioxin-like PCB congener, PCB52 (2,2',5,5'-tetrachlorobiphenyl), is found at one of the highest levels of any congener in school air. PCB52 is oxidized in the liver to hydroxylated forms, mainly 4-OH-PCB52 (2,2',5,5'-tetrachlorobiphenyl-4-ol). In a previous study, we reported on RNAseq data generated from exposure of human preadipocytes to the dioxin-like PCB congener, PCB126. In this new dataset, we used identical techniques to examine alterations in gene transcript levels in human preadipocytes exposed to PCB52 or 4-OH-PCB52 over a time course. This updated set of data provides a comprehensive transcriptional profile of changes that occur in preadipocytes exposed to PCB52 or 4-OH-PCB52 over time and allows for comparison of these changes between the parent compound and its hydroxy metabolite. The datasets will allow others to explore how PCB52 and 4-OH-PCB52 impact biological pathways in preadipocytes. Further studies can be performed to determine how these changes might lead to disease.

4.
Front Immunol ; 13: 943333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860241

RESUMO

Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.


Assuntos
COVID-19 , Células-Tronco Mesenquimais , COVID-19/terapia , Células Cultivadas , Humanos , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/terapia
5.
Stem Cells Transl Med ; 11(1): 2-13, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641163

RESUMO

The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated "Stem Cell Clinics" offering diverse "Unproven Stem Cell Interventions." This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Coagulação Sanguínea , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Tromboplastina/metabolismo
6.
Transl Vis Sci Technol ; 9(8): 16, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32855863

RESUMO

Purpose: The purpose of this study was to determine mesenchymal stem cell (MSC) therapy efficacy on rescuing the visual system in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) and to provide new mechanistic insights. Methods: EAE was induced in female C57BL6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG)35-55, complete Freund's adjuvant, and pertussis toxin. The findings were compared to sham-immunized mice. Half of the EAE mice received intraperitoneally delivered stem cells (EAE + MSC). Clinical progression was monitored according to a five-point EAE scoring scheme. Pattern electroretinogram (PERG) and retinal nerve fiber layer (RNFL) thickness were measured 32 days after induction. Retinas were harvested to determine retinal ganglion cell (RGC) density and prepared for RNA-sequencing. Results: EAE animals that received MSC treatment seven days after EAE induction showed significantly lower motor-sensory impairment, improvement in the PERG amplitude, and preserved RNFL. Analysis of RNA-sequencing data demonstrated statistically significant differences in gene expression in the retina of MSC-treated EAE mice. Differentially expressed genes were enriched for pathways involved in endoplasmic reticulum stress, endothelial cell differentiation, HIF-1 signaling, and cholesterol transport in the MSC-treated EAE group. Conclusions: Systemic MSC treatment positively affects RGC function and survival in EAE mice. Better cholesterol handling by increased expression of Abca1, the cholesterol efflux regulatory protein, paired with the resolution of HIF-1 signaling activation might explain the improvements seen in PERG of EAE animals after MSC treatment. Translational Relevance: Using MSC therapy in a mouse model of MS, we discovered previously unappreciated biochemical pathways associated with RGC neuroprotection, which have the potential to be pharmacologically targeted as a new treatment regimen.


Assuntos
Células-Tronco Mesenquimais , Esclerose Múltipla , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/terapia , Glicoproteína Mielina-Oligodendrócito , Células Ganglionares da Retina
7.
J R Soc Interface ; 17(167): 20190815, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32546114

RESUMO

Human mesenchymal stromal cells (MSCs) are a leading cell therapy candidate for the treatment of immune and inflammatory diseases due to their potent regulation of immune cells. MSC expression of indoleamine-2,3-dioxygenase (IDO) upon interferon γ (IFNγ) exposure has been proposed as both a sentinel marker and key mediator of MSC immunomodulatory potency. Rather than wait for in vivo exposure to cytokines, MSCs can be pre-licensed during manufacturing to enhance IDO expression. In this study, we systematically examine the relative role that the dose of IFNγ, the duration of pre-licensing and the donor of origin play in dictating MSC production of functional IDO. We find that across three human MSC donors, MSCs increase their expression of IDO in response to both increased dose of IFNγ and duration of pre-licensing. However, with extended pre-licensing, the expression of IDO no longer predicts MSCs ability to suppress activated peripheral blood mononuclear cells. In addition, pre-licensing dose and duration are revealed to be minor modifiers of MSCs inherent potency, and thus cannot be manipulated to boost poor donors to the levels of high-performing donors. Thus, the dose and duration of pre-licensing should be tailored to optimize performance of specific donors and an emphasis on donor selection is needed to realize significant benefits of pre-licensing.


Assuntos
Células-Tronco Mesenquimais , Proliferação de Células , Células Cultivadas , Humanos , Imunomodulação , Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Leucócitos Mononucleares
8.
Mol Metab ; 36: 100965, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32240964

RESUMO

OBJECTIVE: T-box 1 (TBX1) has been identified as a genetic marker of beige adipose tissue. TBX1 is a mesodermal development transcription factor essential for tissue patterning and cell fate determination. However, whether it plays a role in the process of adipose beiging or how it functions in adipose tissue has not been reported. Here, we examined the function of TBX1 in adipose tissue as well as adipose-derived stem cells from mice and humans. METHODS: Adipose-specific TBX1 transgenic (TBX1 AdipoTG) and adipose-specific TBX1 knockout (TBX1 AdipoKO) mice were generated to explore the function of TBX1 in the process of adipose beiging, metabolism and energy homeostasis in vivo. In vitro, we utilized a siRNA mediated approach to determine the function of TBX1 during adipogenesis in mouse and human stem cells. RESULTS: Adipose-specific overexpression of TBX1 was not sufficient to fully induce beiging and prevent diet-induced obesity. However, adipose TBX1 expression was necessary to defend body temperature during cold through regulation of UCP1 and for maintaining ß3-adrenergic sensitivity and glucose homeostasis in vivo. Loss of adipose TBX1 expression enhanced basal lipolysis and reduced the size of subcutaneous iWAT adipocytes. Reduction of TBX1 expression via siRNA significantly impaired adipogenesis of mouse stromal vascular cells but significantly enhanced adipogenesis in human adipose derived stem cells. CONCLUSIONS: Adipose expression of TBX1 is necessary, but not sufficient, to defend body temperature during cold via proper UCP1 expression. Adipose TBX1 expression was also required for proper insulin signaling in subcutaneous adipose as well as for maintaining ß-adrenergic sensitivity, but overexpression of TBX1 was not sufficient to induce adipocyte beiging or to prevent diet-induced obesity. TBX1 expression is enriched in adipose stem cells in which it has contrasting effects on adipogenesis in mouse versus human cells. Collectively, these data demonstrate the importance of adipose TBX1 in the regulation of beige adipocyte function, energy homeostasis, and adipocyte development.


Assuntos
Tecido Adiposo Bege/metabolismo , Gordura Subcutânea/metabolismo , Proteínas com Domínio T/metabolismo , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Obesidade/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/genética , Gordura Subcutânea/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
9.
Front Immunol ; 11: 143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158443

RESUMO

Mesenchymal stromal cells (MSCs) are administered locally to treat sites of inflammation. Local delivery is known to cause MSCs to aggregate into "spheroids," which alters gene expression and phenotype. While adherent MSCs are highly efficient in their inhibition of T cells, whether or not this property is altered upon MSC aggregation has not been thoroughly determined. In this study, we discovered that aggregation of MSCs into spheroids causes them to lose their T cell-suppressive abilities. Interestingly, adding budesonide, a topical glucocorticoid steroid, alongside spheroids partially restored MSC suppression of T cell proliferation. Through a series of inhibition and add-back studies, we determined budesonide acts synergistically with spheroid MSC-produced PGE2 to suppress T cell proliferation through the PGE2 receptors EP2 and EP4. These findings highlight critical differences between adherent and spheroid MSC interactions with human immune cells that have significant translational consequences. In addition, we uncovered a mechanism through which spheroid MSC suppression of T cells can be partly restored. By understanding the phenotypic changes that occur upon MSC aggregation and the impact of MSC drug interactions, improved immunosuppressive MSC therapies for localized delivery can be designed.


Assuntos
Imunomodulação/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Esferoides Celulares/imunologia , Esferoides Celulares/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células da Medula Óssea/metabolismo , Budesonida/farmacologia , Agregação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Humanos , Fatores Imunológicos/metabolismo , Ativação Linfocitária , Transdução de Sinais/efeitos dos fármacos , Doadores de Tecidos , Cordão Umbilical/citologia
11.
J Vis Exp ; (147)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31157773

RESUMO

Various genetic tools are available to modulate genes in pancreatic islets of rodents to dissect function of islet genes for diabetes research. However, the data obtained from rodent islets are often not fully reproduced in or applicable to human islets due to well-known differences in islet structure and function between the species. Currently, techniques that are available to manipulate gene expression of human islets are very limited. Introduction of transgene into intact islets by adenovirus, plasmid, and oligonucleotides often suffers from low efficiency and high toxicity. Low efficiency is especially problematic in gene downregulation studies in intact islets, which require high efficiency. It has been known that enzymatically-dispersed islet cells reaggregate in culture forming spheroids termed pseudoislets. Size-controlled reaggregation of human islet cells creates pseudoislets that maintain dynamic first phase insulin secretion after prolonged culture and provide a window to efficiently introduce lentiviral short hairpin RNA (shRNA) with low toxicity. Here, a detailed protocol for the creation of human pseudoislets after lentiviral transduction using two commercially available multiwell plates is described. The protocol can be easily performed and allows for efficient downregulation of genes and assessment of dynamism of insulin secretion using human islet cells. Thus, human pseudoislets with lentiviral mediated gene modulation provide a powerful and versatile model to assess gene function within human islet cells.


Assuntos
Inativação Gênica , Ilhotas Pancreáticas/metabolismo , Lentivirus/genética , Transfecção/métodos , Células Cultivadas , Expressão Gênica , Humanos , Secreção de Insulina/genética , Ilhotas Pancreáticas/citologia , RNA Interferente Pequeno/genética , RNA Viral/genética , Transgenes
12.
Front Immunol ; 10: 1080, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134100

RESUMO

As MSC products move from early development to clinical translation, culture conditions shift from xeno- to xeno-free systems. However, the impact of isolation and culture-expansion methods on the long-term resiliency of MSCs within challenging transplant environments is not fully understood. Recent work in our lab has shown that palmitate, a saturated fatty acid elevated in the serum of patients with obesity, causes MSCs to convert from an immunosuppressive to an immunostimulatory state at moderate to high physiological levels. This demonstrated that metabolically-diseased environments, like obesity, alter the immunomodulatory efficacy of healthy donor MSCs. In addition, it highlighted the need to test MSC efficacy not only in ideal conditions, but within challenging metabolic environments. To determine how the choice of xeno- vs. xeno-free media during isolation and expansion would affect future immunosuppressive function, umbilical cord explants from seven donors were subdivided and cultured within xeno- (fetal bovine serum, FBS) or xeno-free (human platelet lysate, PLT) medias, creating 14 distinct MSC preparations. After isolation and primary expansion, umbilical cord MSCs (ucMSC) were evaluated according to the ISCT minimal criteria for MSCs. Following baseline characterization, ucMSC were exposed to physiological doses of palmitate and analyzed for metabolic health, apoptotic induction, and immunomodulatory potency in co-cultures with stimulated human peripheral blood mononuclear cells. The paired experimental design (each ucMSC donor grown in two distinct culture environments) allowed us to delineate the contribution of inherent (nature) vs. environmentally-driven (nurture) donor characteristics to the phenotypic response of ucMSC during palmitate exposure. Culturing MSCs in PLT-media led to more consistent growth characteristics during the isolation and expansion for all donors, resulting in faster doubling times and higher cell yields compared to FBS. Upon palmitate challenge, PLT-ucMSCs showed a higher susceptibility to palmitate-induced metabolic disturbance, but less susceptibility to palmitate-induced apoptosis. Most striking however, was that the PLT-ucMSCs resisted the conversion to an immunostimulatory phenotype better than their FBS counterparts. Interestingly, examining MSC suppression of PBMC proliferation at physiologic doses of palmitate magnified the differences between donors, highlighting the utility of evaluating MSC products in stress-based assays that reflect the challenges MSCs may encounter post-transplantation.


Assuntos
Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Células-Tronco Mesenquimais/citologia , Palmitatos/metabolismo , Cordão Umbilical/citologia , Plaquetas/citologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Humanos , Transplante de Células-Tronco Mesenquimais , Obesidade/sangue , Obesidade/patologia , Palmitatos/sangue
13.
Nat Biomed Eng ; 3(2): 90-104, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30944433

RESUMO

Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Apoptose , Diferenciação Celular , Ensaios Clínicos como Assunto , Criopreservação , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos
14.
Trends Mol Med ; 25(2): 149-163, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30711482

RESUMO

Intravascular infusion is the most popular route for therapeutic multipotent mesenchymal stromal/stem cell (MSC) delivery in hundreds of clinical trials. Meta-analysis has demonstrated that bone marrow MSC infusion is safe. It is not clear if this also applies to diverse new cell products derived from other sources, such as adipose and perinatal tissues. Different MSC products display varying levels of highly procoagulant tissue factor (TF) and may adversely trigger the instant blood-mediated inflammatory reaction (IBMIR). Suitable strategies for assessing and controlling hemocompatibility and optimized cell delivery are crucial for the development of safer and more effective MSC therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Ensaios Clínicos como Assunto , Humanos , Inflamação/etiologia , Inflamação/imunologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/imunologia , Tromboplastina/análise , Tromboplastina/imunologia
15.
Physiol Rep ; 6(20): e13907, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30370689

RESUMO

Rodent islets are widely used to study the pathophysiology of beta cells and islet function, however, structural and functional differences exist between human and rodent islets, highlighting the need for human islet studies. Human islets are highly variable, deteriorate during culture, and are difficult to genetically modify, making mechanistic studies difficult to conduct and reproduce. To overcome these limitations, we tested whether pseudoislets, created by dissociation and reaggregation of islet cell suspensions, allow for assessment of dynamic islet function after genetic modulation. Characterization of pseudoislets cultured for 1 week revealed better preservation of first-phase glucose-stimulated insulin secretion (GSIS) compared with cultured-intact islets and insulin secretion profiles similar to fresh islets when challenged by glibenclamide and KCl. qPCR indicated that pseudoislets are similar to the original islets for the expression of markers for cell types, beta cell function, and cellular stress with the exception of reduced proinflammatory cytokine genes (IL1B, CCL2, CXCL8). The expression of extracellular matrix markers (ASPN, COL1A1, COL4A1) was also altered in pseudoislets compared with intact islets. Compared with intact islets transduced by adenovirus, pseudoislets transduced by lentivirus showed uniform transduction and better first-phase GSIS. Lastly, the lentiviral-mediated delivery of short hairpin RNA targeting glucokinase (GCK) achieved significant reduction of GCK expression in pseudoislets as well as marked reduction of both first and second phase GSIS without affecting the insulin secretion in response to KCl. Thus, pseudoislets are a tool that enables efficient genetic modulation of human islet cells while preserving insulin secretion.


Assuntos
Técnicas de Transferência de Genes , Glucoquinase/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , RNA Interferente Pequeno/genética , Adulto , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Glucoquinase/metabolismo , Humanos , Lentivirus/genética , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo
16.
Mol Ther ; 26(3): 860-873, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29352647

RESUMO

The use of mesenchymal stromal cell (MSC) therapy for the treatment of type 2 diabetes (T2D) and T2D complications is promising; however, the investigation of MSC function in the setting of T2D has not been thoroughly explored. In our current study, we investigated the phenotype and function of MSCs in a simulated in vitro T2D environment. We show that palmitate, but not glucose, exposure impairs MSC metabolic activity with moderate increases in apoptosis, while drastically affecting proliferation and morphology. In co-culture with peripheral blood mononuclear cells (PBMCs), we found that MSCs not only lose their normal suppressive ability in high levels of palmitate, but actively support and enhance inflammation, resulting in elevated PBMC proliferation and pro-inflammatory cytokine release. The pro-inflammatory effect of MSCs in palmitate was partially reversed via palmitate removal and fully reversed through pre-licensing MSCs with interferon-gamma and tumor necrosis factor alpha. Thus, palmitate, a specific metabolic factor enriched within the T2D environment, is a potent modulator of MSC immunosuppressive function, which may in part explain the depressed potency observed in MSCs isolated from T2D patients. Importantly, we have also identified a robust and durable pre-licensing regimen that protects MSC immunosuppressive function in the setting of T2D.


Assuntos
Interferon gama/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Palmitatos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Humanos , Imunomodulação/efeitos dos fármacos , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interferon gama/farmacologia , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Fenótipo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
17.
Stem Cells ; 35(5): 1437-1439, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27758056

RESUMO

Tailoring MSCs to fit the disease. Fresh, cryopreserved and, prelicensed cryopreserved MSC are all being explored to treat numerous diseases, but all are not suitable to treat all conditions. injury. "*" denotes preferred therapeutic strategy when both fresh MSC and cryo-MSC have shown utility in treating the disease but one is more efficacious or logistically suitable. ABBREVIATIONS: CLI, critical limb ischemia; GvHD. graft versus host disease; I/R, ischemia reperfusion (I/R); OI, osteogenesis imperfecta.


Assuntos
Criopreservação , Interferon gama/farmacologia , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia
18.
Sci Rep ; 6: 26463, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27212469

RESUMO

The ability to use mesenchymal stromal cells (MSC) directly out of cryostorage would significantly reduce the logistics of MSC therapy by allowing on-site cryostorage of therapeutic doses of MSC at hospitals and clinics. Such a paradigm would be especially advantageous for the treatment of acute conditions such as stroke and myocardial infarction, which are likely to require treatment within hours after ischemic onset. Recently, several reports have emerged that suggest MSC viability and potency are damaged by cryopreservation. Herein we examine the effect of cryopreservation on human MSC viability, immunomodulatory potency, growth factor secretion, and performance in an ischemia/reperfusion injury model. Using modifications of established cryopreservation methods we developed MSC that retain >95% viability upon thawing, remain responsive to inflammatory signals, and are able to suppress activated human peripheral blood mononuclear cells. Most importantly, when injected into the eyes of mice 3 hours after the onset of ischemia and 2 hours after the onset of reperfusion, cryopreserved performed as well as fresh MSC to rescue retinal ganglion cells. Thus, our data suggests when viability is maintained throughout the cryopreservation process, MSC retain their therapeutic potency in both in vitro potency assays and an in vivo ischemia/reperfusion model.


Assuntos
Criopreservação/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Traumatismo por Reperfusão/terapia , Doenças Retinianas/terapia , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Células Ganglionares da Retina/citologia
19.
Sci Rep ; 4: 4645, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717973

RESUMO

Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy.


Assuntos
Budesonida/farmacologia , Glucocorticoides/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Células-Tronco Mesenquimais/metabolismo , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Budesonida/administração & dosagem , Proliferação de Células , Células Cultivadas , Dexametasona/farmacologia , Glucocorticoides/administração & dosagem , Antígenos HLA-A/biossíntese , Antígenos HLA-B/biossíntese , Antígenos HLA-C/biossíntese , Antígenos HLA-DR/biossíntese , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Nanopartículas , Interferência de RNA , RNA Interferente Pequeno
20.
Nat Biotechnol ; 32(3): 252-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561556

RESUMO

The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or 'immune privileged'; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief 'hit and run' mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Pesquisa Biomédica , Ensaios Clínicos como Assunto , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA