Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 301: 122240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480758

RESUMO

Controlling traumatic bleeding from damaged internal organs while effectively sealing the wound is critical for saving the lives of patients. Existing bioadhesives suffer from blood incompatibility, insufficient adhesion to wet surfaces, weak mechanical properties, and complex application procedures. Here, we engineered a ready-to-use hemostatic bioadhesive with ultra-strengthened mechanical properties and fatigue resistance, robust adhesion to wet tissues within a few seconds of gentle pressing, deformability to accommodate physiological function and action, and the ability to stop bleeding efficiently. The engineered hydrogel, which demonstrated high elasticity (>900%) and toughness (>4600 kJ/m3), was formed by fine-tuning a series of molecular interactions and crosslinking mechanisms involving N-hydroxysuccinimide (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Dual adhesive moieties including mussel-inspired pyrogallol/catechol and NHS synergistically enhanced wet tissue adhesion (>400 kPa in a wound closure test). In conjunction with physical sealing, the high affinity of TA/Fe3+ for blood could further augment hemostasis. The engineered bioadhesive demonstrated excellent in vitro and in vivo biocompatibility as well as improved hemostatic efficacy as compared to commercial Surgicel®. Overall, the hydrogel design strategy described herein holds great promise for overcoming existing obstacles impeding clinical translation of engineered hemostatic bioadhesives.


Assuntos
Hemostáticos , Humanos , Hemostáticos/farmacologia , Aderências Teciduais , Fenômenos Físicos , Hidrogéis , Hemostasia
2.
Adv Healthc Mater ; 11(13): e2200055, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35368150

RESUMO

Implantable cardiac patches and injectable hydrogels are among the most promising therapies for cardiac tissue regeneration following myocardial infarction. Incorporating electrical conductivity into these patches and hydrogels is found to be an efficient method to improve cardiac tissue function. Conductive nanomaterials such as carbon nanotube, graphene oxide, gold nanorod, as well as conductive polymers such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate are appealing because they possess the electroconductive properties of semiconductors with ease of processing and have potential to restore electrical signaling propagation through the infarct area. Numerous studies have utilized these materials for regeneration of biological tissues that possess electrical activities, such as cardiac tissue. In this review, recent studies on the use of electroconductive materials for cardiac tissue engineering and their fabrication methods are summarized. Moreover, recent advances in developing electroconductive materials for delivering therapeutic agents as one of emerging approaches for treating heart diseases and regenerating damaged cardiac tissues are highlighted.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Materiais Biocompatíveis , Condutividade Elétrica , Hidrogéis , Polímeros , Pirróis , Engenharia Tecidual/métodos
3.
Int Urogynecol J ; 33(8): 2223-2232, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34999912

RESUMO

INTRODUCTION AND HYPOTHESIS: The aims of this study were to evaluate the effectiveness of gelatin methacryloyl as an adjunct to anterior vaginal wall injury with or without vaginal mesh compared with traditional repair with suture. METHODS: Virginal cycling Hartley strain guinea pigs (n = 60) were randomized to undergo surgical injury and repair using either polyglactin 910 suture or gelatin methacryloyl for epithelium re-approximation or anterior colporrhaphy with mesh augmentation using either polyglactin 910 suture or gelatin methacryloyl for mesh fixation and epithelium re-approximation. Noninjured controls (n = 5) were also evaluated. After 4 days, 4 weeks, or 3 months, tissues were analyzed by hematoxylin & eosin in addition to immunolabeling for macrophages, leukocytes, smooth muscle, and fibroblasts. RESULTS: Surgical injury repaired with suture was associated with increased inflammation and vessel density compared with gelatin methacryloyl. Vimentin and α-smooth muscle actin expression were increased with gelatin methacryloyl at 4 days (p = 0.0026, p = 0.0272). There were no differences in changes in smooth muscle or overall histomorphology after 3 months between the two closure techniques. Mesh repair with suture was also associated with increased inflammation and vessel density relative to gelatin methacryloyl. Quantification of collagen content by picrosirius red staining revealed increased thick collagen fibers throughout the implanted mesh with gelatin methacryloyl compared with suture at 4 weeks (0.62 ± 0.01 µm2 vs 0.55 ± 0.01, p = 0.018). Even at the long-term time point of 3 months, mesh repair with suture resulted in a profibrotic encapsulation of the mesh fibers, which was minimal with gelatin methacryloyl. Smooth muscle density was suppressed after mesh implantation returning to baseline levels at 3 months regardless of fixation with suture or gelatin methacryloyl. CONCLUSIONS: These results suggest that gelatin methacryloyl might be a safe alternative to suture for epithelium re-approximation and anchoring of prolapse meshes to the vagina and may improve chronic inflammation in the vaginal wall associated with mesh complications.


Assuntos
Prolapso de Órgão Pélvico , Telas Cirúrgicas , Animais , Feminino , Cobaias , Colágeno/metabolismo , Gelatina , Hidrogéis , Inflamação , Complicações Intraoperatórias , Metacrilatos , Prolapso de Órgão Pélvico/cirurgia , Poliglactina 910/metabolismo , Telas Cirúrgicas/efeitos adversos , Vagina/metabolismo , Vagina/cirurgia
4.
Bioeng Transl Med ; 6(3): e10240, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589608

RESUMO

Cerebrovascular ischemia from intracranial atherosclerosis remains difficult to treat. Although current revascularization procedures, including intraluminal stents and extracranial to intracranial bypass, have shown some benefit, they suffer from perioperative and postoperative morbidity. To address these limitations, here we developed a novel approach that involves gluing of arteries and subsequent transmural anastomosis from the healthy donor into the ischemic recipient. This approach required an elastic vascular sealant with distinct mechanical properties and adhesion to facilitate anastomosis. We engineered two hydrogel-based glues: an elastic composite hydrogel based on methacryloyl elastin-like polypeptide (mELP) combined with gelatin methacryloyl (GelMA) and a stiff glue based on pure GelMA. Two formulations with distinct mechanical characteristics were necessary to achieve stable anastomosis. The elastic GelMA/mELP composite glue attained desirable mechanical properties (elastic modulus: 288 ± 19 kPa, extensibility: 34.5 ± 13.4%) and adhesion (shear strength: 26.7 ± 5.4 kPa) to the blood vessel, while the pure GelMA glue exhibited superior adhesion (shear strength: 49.4 ± 7.0 kPa) at the cost of increased stiffness (elastic modulus: 581 ± 51 kPa) and reduced extensibility (13.6 ± 2.5%). The in vitro biocompatibility tests confirmed that the glues were not cytotoxic and were biodegradable. In addition, an ex vivo porcine anastomosis model showed high arterial burst pressure resistance of 34.0 ± 7.5 kPa, which is well over normal (16 kPa), elevated (17.3 kPa), and hypertensive crisis (24 kPa) systolic blood pressures in humans. Finally, an in vivo swine model was used to assess the feasibility of using the newly developed two-glue system for an endovascular anastomosis. X-ray imaging confirmed that the anastomosis was made successfully without postoperative bleeding complications and the procedure was well tolerated. In the future, more studies are required to evaluate the performance of the developed sealants under various temperature and humidity ranges.

5.
Adv Mater ; 33(39): e2100176, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34251690

RESUMO

With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.


Assuntos
Hidrogéis/farmacologia , Imunomodulação/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Bandagens , Materiais Biocompatíveis/química , Humanos , Hidrogéis/química , Integrina alfaVbeta3/metabolismo , Interleucina-10/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Dermatopatias/imunologia , Dermatopatias/patologia
6.
Exp Eye Res ; 205: 108472, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33516765

RESUMO

Abnormal human trabecular meshwork (HTM) cell function and extracellular matrix (ECM) remodeling contribute to HTM stiffening in primary open-angle glaucoma (POAG). Most current cellular HTM model systems do not sufficiently replicate the complex native three dimensional (3D) cell-ECM interface, limiting their use for investigating POAG pathology. Tissue-engineered hydrogels are ideally positioned to overcome shortcomings of current models. Here, we report a novel biomimetic HTM hydrogel and test its utility as a POAG disease model. HTM hydrogels were engineered by mixing normal donor-derived HTM cells with collagen type I, elastin-like polypeptide and hyaluronic acid, each containing photoactive functional groups, followed by UV crosslinking. Glaucomatous conditions were induced with dexamethasone (DEX), and effects of the Rho-associated kinase (ROCK) inhibitor Y27632 on cytoskeletal organization and tissue-level function, contingent on HTM cell-ECM interactions, were assessed. DEX exposure increased HTM hydrogel contractility, f-actin and alpha smooth muscle actin abundance and rearrangement, ECM remodeling, and fibronectin deposition - all contributing to HTM hydrogel condensation and stiffening consistent with glaucomatous HTM tissue behavior. Y27632 treatment produced precisely the opposite effects and attenuated the DEX-induced pathologic changes, resulting in HTM hydrogel relaxation and softening. For model validation, confirmed glaucomatous HTM (GTM) cells were encapsulated; GTM hydrogels showed increased contractility, fibronectin deposition, and stiffening vs. normal HTM hydrogels despite reduced GTM cell proliferation. We have developed a biomimetic HTM hydrogel model for detailed investigation of 3D cell-ECM interactions under normal and simulated glaucomatous conditions. Its bidirectional responsiveness to pharmacological challenge and rescue suggests promising potential to serve as screening platform for new POAG treatments with focus on HTM biomechanics.


Assuntos
Glaucoma de Ângulo Aberto/patologia , Hidrogéis , Modelos Biológicos , Malha Trabecular/patologia , Actinas/metabolismo , Idoso de 80 Anos ou mais , Amidas/farmacologia , Materiais Biomiméticos , Proteínas do Citoesqueleto/genética , Dexametasona/farmacologia , Elastina/genética , Inibidores Enzimáticos/farmacologia , Proteínas do Olho/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Glaucoma de Ângulo Aberto/metabolismo , Glucocorticoides/farmacologia , Glicoproteínas/genética , Humanos , Imuno-Histoquímica , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Engenharia Tecidual , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
7.
Nano Today ; 362021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33391389

RESUMO

Cancer patients with malignant involvement of tumor-draining lymph nodes (TDLNs) and distant metastases have the poorest prognosis. A drug delivery platform that targets the primary tumor, TDLNs, and metastatic niches simultaneously, remains to be developed. Here, we generated a novel monoclonal antibody (MHA112) against peripheral node addressin (PNAd), a family of glycoproteins expressed on high endothelial venules (HEVs), which are present constitutively in the lymph nodes (LNs) and formed ectopically in the tumor stroma. MHA112 was endocytosed by PNAd-expressing cells, where it passed through the lysosomes. MHA112 conjugated antineoplastic drug Paclitaxel (Taxol) (MHA112-Taxol) delivered Taxol effectively to the HEV-containing tumors, TDLNs, and metastatic lesions. MHA112-Taxol treatment significantly reduced primary tumor size as well as metastatic lesions in a number of mouse and human tumor xenografts tested. These data, for the first time, indicate that human metastatic lesions contain HEVs and provide a platform that permits simultaneous targeted delivery of antineoplastic drugs to the three key sites of primary tumor, TDLNs, and metastases.

8.
Med Res Rev ; 41(3): 1221-1254, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347711

RESUMO

Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.


Assuntos
Nanopartículas , Osteoporose , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina
9.
Nano Today ; 352020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33244320

RESUMO

Specific delivery platforms for drugs to the kidney and diagnostic agents to renal cell carcinoma (RCC) constitute urgent but unfulfilled clinical needs. To address these challenges, we engineered nanocarriers that interact selectively for the first time with proximal tubule epithelial cells (PTECs) in the kidney and with RCC through the interplay between lambda light chains (LCs) attached to PEGylated polylactic-co-glycolic acid (PLGA) nanoparticles and the membrane protein megalin. Systemic administration of these light chain-conjugated nanoparticles (LC-NPs) to mice resulted in their specific retention by megalin-expressing PTECs for seven days. Repetitive dosing of LC-NPs demonstrated no renal toxicity. LC-NPs also localized selectively to megalin-expressing RCC tumors in mice. Moreover, we confirmed that both the primary tumor and lymph node metastases of human RCC express megalin, reinforcing the potential of LC-NPs for clinical use. Thus, LC-NPs can contribute potentially to improving the management of both non-oncologic and oncologic renal disorders.

10.
Carbohydr Polym ; 250: 116861, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049815

RESUMO

Combination therapy by two or multiple drugs with different mechanisms of action is a promising strategy in cancer treatment. In this regard, a wide range of chemotherapeutics has used simultaneously to achieve the synergistic effect and overcome the adverse side effects of single-drug therapy. Herein, we developed a biocompatible nanoparticle-based system composed of nanocrystalline cellulose (NCC) and amino acid l-lysine for efficient co-delivery of model chemotherapeutic methotrexate (MTX) and polyphenol compound curcumin (CUR) to the MCF-7 and MDA-MB-231 cells. The drugs could release in a sustained and acidic-facilitate manner. In vitro cytotoxicity results represented the superior anti-tumor efficacy of the dual-drug-loaded nanocarriers. Possible inhibition of cell growth and induction of apoptosis in the cells treated with different formulations of CUR and MTX were explored by cell cycle analysis and DAPI staining. Overall, the engineered nanosystem can be used as suitable candidates to achieve efficient multi-drug delivery for combination cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Celulose/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lisina/química , Nanopartículas/administração & dosagem , Apoptose , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Curcumina/administração & dosagem , Liberação Controlada de Fármacos , Feminino , Humanos , Metotrexato/administração & dosagem , Nanopartículas/química , Células Tumorais Cultivadas
11.
Small ; 15(36): e1902232, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328877

RESUMO

Chronic wounds are characterized by impaired healing and uncontrolled inflammation, which compromise the protective role of the immune system and may lead to bacterial infection. Upregulation of miR-223 microRNAs (miRNAs) shows driving of the polarization of macrophages toward the anti-inflammatory (M2) phenotype, which could aid in the acceleration of wound healing. However, local-targeted delivery of microRNAs is still challenging, due to their low stability. Here, adhesive hydrogels containing miR-223 5p mimic (miR-223*) loaded hyaluronic acid nanoparticles are developed to control tissue macrophages polarization during wound healing processes. In vitro upregulation of miR-223* in J774A.1 macrophages demonstrates increased expression of the anti-inflammatory gene Arg-1 and a decrease in proinflammatory markers, including TNF-α, IL-1ß, and IL-6. The therapeutic potential of miR-223* loaded adhesive hydrogels is also evaluated in vivo. The adhesive hydrogels could adhere to and cover the wounds during the healing process in an acute excisional wound model. Histological evaluation and quantitative polymerase chain reaction (qPCR) analysis show that local delivery of miR-223* efficiently promotes the formation of uniform vascularized skin at the wound site, which is mainly due to the polarization of macrophages to the M2 phenotype. Overall, this study demonstrates the potential of nanoparticle-laden hydrogels conveying miRNA-223* to accelerate wound healing.


Assuntos
Hidrogéis/química , Imunomodulação/fisiologia , MicroRNAs/química , Nanopartículas/química , Cicatrização/fisiologia , Animais , Linhagem Celular , Ácido Hialurônico/química , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia Eletrônica de Varredura , Cicatrização/genética
12.
Sci Rep ; 9(1): 6535, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024011

RESUMO

A primary goal in the management of burn wounds is early wound closure. The use of skin allografts represents a lifesaving strategy for severe burn patients, but their ultimate rejection limits their potential efficacy and utility. IL-6 is a major pleiotropic cytokine which critically links innate and adaptive immune responses. Here, we devised anti-IL-6 receptor eluting gelatin methacryloyl (GelMA) biomaterials (GelMA/anti-IL-6), which were implanted at the interface between the wound beds and skin allografts. Our visible light crosslinked GelMA/anti-IL-6 immunomodulatory biomaterial (IMB) demonstrated a stable kinetic release profile of anti-IL-6. In addition, the incorporation of anti-IL-6 within the GelMA hydrogel had no effect on the mechanical properties of the hydrogels. Using a highly stringent skin transplant model, the GelMA/anti-IL-6 IMB almost doubled the survival of skin allografts. The use of GelMA/anti-IL-6 IMB was far superior to systemic anti-IL-6 receptor treatment in prolonging skin allograft survival. As compared to the untreated control group, skin from the GelMA/anti-IL-6 IMB group contained significantly fewer alloreactive T cells and macrophages. Interestingly, the environmental milieu of the draining lymph nodes (DLNs) of the mice implanted with the GelMA/anti-IL-6 IMB was also considerably less pro-inflammatory. The percentage of CD4+ IFNγ+ cells was much lower in the DLNs of the GelMA/anti-IL-6 IMB group in comparison to the GelMA group. These data highlight the importance of localized immune delivery in prolonging skin allograft survival and its potential utility in treating patients with severe burns.


Assuntos
Aloenxertos/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Interleucina-6/imunologia , Transplante de Pele , Animais , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Fibrose , Gelatina/química , Sobrevivência de Enxerto/imunologia , Inflamação/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Metacrilatos/química , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Suínos , Linfócitos T/efeitos dos fármacos , Adesivos Teciduais/farmacologia
13.
Sci Adv ; 5(3): eaav1281, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30906864

RESUMO

Corneal injuries are common causes of visual impairment worldwide. Accordingly, there is an unmet need for transparent biomaterials that have high adhesion, cohesion, and regenerative properties. Herein, we engineer a highly biocompatible and transparent bioadhesive for corneal reconstruction using a visible light cross-linkable, naturally derived polymer, GelCORE (gel for corneal regeneration). The physical properties of GelCORE could be finely tuned by changing prepolymer concentration and photocrosslinking time. GelCORE revealed higher tissue adhesion compared to commercial adhesives. Furthermore, in situ photopolymerization of GelCORE facilitated easy delivery to the cornea, allowing for bioadhesive curing precisely according to the required geometry of the defect. In vivo experiments, using a rabbit stromal defect model, showed that bioadhesive could effectively seal corneal defects and induce stromal regeneration and re-epithelialization. Overall, GelCORE has many advantages including low cost and ease of production and use. This makes GelCORE a promising bioadhesive for corneal repair.


Assuntos
Lesões da Córnea/cirurgia , Hidrogéis/farmacologia , Regeneração/efeitos dos fármacos , Procedimentos Cirúrgicos sem Sutura/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Córnea/efeitos dos fármacos , Córnea/patologia , Córnea/cirurgia , Lesões da Córnea/patologia , Humanos , Hidrogéis/efeitos da radiação , Luz , Coelhos , Regeneração/efeitos da radiação , Células Estromais/efeitos da radiação
14.
Biomaterials ; 197: 345-367, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30690421

RESUMO

Closure of ocular wounds after an accident or surgery is typically performed by suturing, which is associated with numerous potential complications, including suture breakage, inflammation, secondary neovascularization, erosion to the surface and secondary infection, and astigmatism; for example, more than half of post-corneal transplant infections are due to suture related complications. Tissue adhesives provide promising substitutes for sutures in ophthalmic surgery. Ocular adhesives are not only intended to address the shortcomings of sutures, but also designed to be easy to use, and can potentially minimize post-operative complications. Herein, recent progress in the design, synthesis, and application of ocular adhesives, along with their advantages, limitations, and potential are discussed. This review covers two main classes of ocular adhesives: (1) synthetic adhesives based on cyanoacrylates, polyethylene glycol (PEG), and other synthetic polymers, and (2) adhesives based on naturally derived polymers, such as proteins and polysaccharides. In addition, different technologies to cover and protect ocular wounds such as contact bandage lenses, contact lenses coupled with novel technologies, and decellularized corneas are discussed. Continued advances in this area can help improve both patient satisfaction and clinical outcomes.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Traumatismos Oculares/terapia , Polímeros/uso terapêutico , Adesivos Teciduais/uso terapêutico , Cicatrização , Animais , Bandagens , Materiais Biocompatíveis/química , Lentes de Contato , Reagentes de Ligações Cruzadas/uso terapêutico , Cianoacrilatos/uso terapêutico , Sistemas de Liberação de Medicamentos , Olho/patologia , Humanos , Polietilenoglicóis/uso terapêutico , Polímeros/química , Polissacarídeos/uso terapêutico , Proteínas/uso terapêutico , Cicatrização/efeitos dos fármacos
15.
Prog Polym Sci ; 92: 135-157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32831422

RESUMO

Electroconductive hydrogels (ECHs) are highly hydrated 3D networks generated through the incorporation of conductive polymers, nanoparticles, and other conductive materials into polymeric hydrogels. ECHs combine several advantageous properties of inherently conductive materials with the highly tunable physical and biochemical properties of hydrogels. Recently, the development of biocompatible ECHs has been investigated for various biomedical applications, such as tissue engineering, drug delivery, biosensors, flexible electronics, and other implantable medical devices. Several methods for the synthesis of ECHs have been reported, which include the incorporation of electrically conductive materials such as gold and silver nanoparticles, graphene, and carbon nanotubes, as well as various conductive polymers (CPs), such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxyythiophene) into hydrogel networks. Theses electroconductive composite hydrogels can be used as scaffolds with high swellability, tunable mechanical properties, and the capability to support cell growth both in vitro and in vivo. Furthermore, recent advancements in microfabrication techniques such as three dimensional (3D) bioprinting, micropatterning, and electrospinning have led to the development of ECHs with biomimetic microarchitectures that reproduce the characteristics of the native extracellular matrix (ECM). In addition, smart ECHs with controlled structures and healing properties have also been engineered into devices with prolonged half-lives and increased durability. The combination of sophisticated synthesis chemistries and modern microfabrication techniques have led to engineer smart ECHs with advanced architectures, geometries, and functionalities that are being increasingly used in drug delivery systems, biosensors, tissue engineering, and soft electronics. In this review, we will summarize different strategies to synthesize conductive biomaterials. We will also discuss the advanced microfabrication techniques used to fabricate ECHs with complex 3D architectures, as well as various biomedical applications of microfabricated ECHs.

16.
EBioMedicine ; 38: 79-88, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30497977

RESUMO

BACKGROUND: Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by enhancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral node addressin (PNAd), which is recognized by the monoclonal antibody MECA79. METHODS: Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC). We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC. FINDINGS: The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a humanized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was associated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor. INTERPRETATION: Targeting the HEVs of PDAC using MECA79-NPs could lay the ground for the localized delivery of a wide variety of drugs including chemotherapeutic agents. FUND: National Institutes of Health (NIH) grants: T32-EB016652 (B·B.), NIH Cancer Core Grant CA034196 (L.D.S.), National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.).


Assuntos
Carcinoma Ductal Pancreático/patologia , Endotélio Linfático/patologia , Linfonodos/patologia , Neovascularização Patológica , Neoplasias Pancreáticas/patologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Biomarcadores , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Endotélio Linfático/efeitos dos fármacos , Endotélio Linfático/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Terapia de Alvo Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Neovascularização Patológica/tratamento farmacológico , Paclitaxel/administração & dosagem , Paclitaxel/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Nanomedicina Teranóstica , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
17.
Adv Healthc Mater ; 7(24): e1800702, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30375196

RESUMO

Microvascular anastomosis is a common part of many reconstructive and transplant surgical procedures. While venous anastomosis can be achieved using microvascular anastomotic coupling devices, surgical suturing is the main method for arterial anastomosis. Suture-based microanastomosis is time-consuming and challenging. Here, dissolvable sugar-based stents are fabricated as an assistive tool for facilitating surgical anastomosis. The nonbrittle sugar-based stent holds the vessels together during the procedure and are dissolved upon the restoration of the blood flow. The incorporation of sodium citrate minimizes the chance of thrombosis. The dissolution rate and the mechanical properties of the sugar-based stent can be tailored between 4 and 8 min. To enable the fabrication of stents with desirable geometries and dimensions, 3D printing is utilized to fabricate the stents. The effectiveness of the printed sugar-based stent is assessed ex vivo. The fabrication procedure is fast and can be performed in the operating room.


Assuntos
Impressão Tridimensional , Stents , Açúcares/química , Anastomose Cirúrgica , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Reologia , Citrato de Sódio/química , Aderências Teciduais
18.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333312

RESUMO

Recent studies in cancer research have focused intensely on the antineoplastic effects of immune checkpoint inhibitors. While the development of these inhibitors has progressed successfully, strategies to further improve their efficacy and reduce their toxicity are still needed. We hypothesized that the delivery of anti-PD-1 antibody encapsulated in PLGA nanoparticles (anti-PD-1 NPs) to the spleen would improve the antitumor effect of this agent. Unexpectedly, we found that mice treated with a high dose of anti-PD-1 NPs exhibited significantly higher mortality compared with those treated with free anti-PD-1 antibody, due to the overactivation of T cells. Administration of anti-PD-1 NPs to splenectomized LT-α-/- mice, which lack both lymph nodes and spleen, resulted in a complete reversal of this increased mortality and revealed the importance of secondary lymphoid tissues in mediating anti-PD-1-associated toxicity. Attenuation of the anti-PD-1 NPs dosage prevented toxicity and significantly improved its antitumor effect in the B16-F10 murine melanoma model. Furthermore, we found that anti-PD-1 NPs undergo internalization by DCs in the spleen, leading to their maturation and the subsequent activation of T cells. Our findings provide important clues that can lead to the development of strategies to enhance the efficacy of immune checkpoint inhibitors.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Células Dendríticas/imunologia , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/toxicidade , Linhagem Celular Tumoral/transplante , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Linfotoxina-alfa/genética , Camundongos , Camundongos Knockout , Nanopartículas/química , Neoplasias/imunologia , Neoplasias/mortalidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Receptor de Morte Celular Programada 1/imunologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Resultado do Tratamento
19.
Artif Cells Nanomed Biotechnol ; 46(sup1): 938-945, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468888

RESUMO

Magnetic nanoparticles have properties that cause to apply them in cancer therapy and vehicles for the delivery of drugs such as 5FU, especially when they are modified with biocompatible copolymers. The aim of this study is to modify superparamagnetic iron oxide nanoparticles (SPIONPs) with PCL-PEG-PCL copolymers and then utilization of these nanoparticles for encapsulation of anticancer drug 5FU. The ring-opening polymerization (ROP) was used for the synthesis of PCL-PEG-PCL copolymer by ε-caprolactone (PCL) and polyethylene glycol (PEG2000). We used the double emulsion method (water/oil/water) to prepare 5FU-encapsulated Fe3O4 magnetic nanoparticles modified with PCL-PEG-PCL copolymer. Chemical structure and magnetic properties of 5FU-loaded magnetic-polymer nanoparticles were investigated systematically by employing FT-IR, XRD, VSM and SEM techniques. In vitro release profile of 5FU-loaded NPs was also determined. The results showed that the encapsulation efficiency value for nanoparticles were 90%. Moreover, the release of 5FU is significantly higher at pH 5.8 compared to pH 7.4. Therefore, these nanoparticles have sustained release and can apply for cancer therapy.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Fluoruracila/química , Nanopartículas de Magnetita/química , Poliésteres/química , Polietilenoglicóis/química , Técnicas de Química Sintética , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Polimerização
20.
ACS Biomater Sci Eng ; 4(7): 2528-2540, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435116

RESUMO

Hydrogel-based biomaterials have been widely used for tissue engineering applications because of their high water content, swellability, and permeability, which facilitate transport and diffusion of essential nutrients, oxygen, and waste across the scaffold. These characteristics make hydrogels suitable for encapsulating cells and creating a cell supportive environment that promotes tissue regeneration when implanted in vivo. This is particularly important in the context of tissues whose intrinsic regenerative capacity is limited, such as cartilage. However, the clinical translation of hydrogels has been limited by their poor mechanical performance, low adhesive strength, uncontrolled degradation rates, and their susceptibility to bacterial colonization. Here, we introduce an elastic, antimicrobial, and adhesive hydrogel comprised of methacrylated hyaluronic acid (MeHA) and an elastin-like polypeptide (ELP), which can be rapidly photo-cross-linked in situ for the regeneration and repair of different tissues. Hybrid hydrogels with a wide range of physical properties were engineered by varying the concentrations of MeHA and ELP. In addition, standard adhesion tests demonstrated that the MeHA/ELP hydrogels exhibited higher adhesive strength to the tissue than commercially available tissue adhesives. MeHA/ELP hydrogels were then rendered antimicrobial through the incorporation of zinc oxide (ZnO) nanoparticles, and were shown to significantly inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA), as compared to controls. Furthermore, the composite adhesive hydrogels supported in vitro mammalian cellular growth, spreading, and proliferation. In addition, in vivo subcutaneous implantation demonstrated that MeHA/ELP hydrogels did not elicit any significant inflammatory response, and could be efficiently biodegraded while promoting the integration of new autologous tissue. In summary, we demonstrated for the first time that MeHA/ELP-ZnO hydrogel can be used as an adhesive and antimicrobial biomaterial for tissue engineering applications, because of its highly tunable physical characteristics, as well as remarkable adhesive and antimicrobial properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA