Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672408

RESUMO

Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure-activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.

2.
ACS Infect Dis ; 7(2): 281-292, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33513010

RESUMO

Antibacterial adjuvants are of great significance, since they allow the therapeutic dose of conventional antibiotics to be lowered and reduce the insurgence of antibiotic resistance. Herein, we report that an O-acetylserine sulfhydrylase (OASS) inhibitor can be used as a colistin adjuvant to treat infections caused by Gram-positive and Gram-negative pathogens. A compound that binds OASS with a nM dissociation constant was tested as an adjuvant of colistin against six critical pathogens responsible for infections spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, Klebisiella pneumoniae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Staphylococcus pseudintermedius. The compound showed promising synergistic or additive activities against all of them. Knockout experiments confirmed the intracellular target engagement supporting the proposed mechanism of action. Moreover, compound toxicity was evaluated by means of its hemolytic activity against sheep defibrinated blood cells, showing a good safety profile. The 3D structure of the compound in complex with OASS was determined at 1.2 Å resolution by macromolecular crystallography, providing for the first time structural insights about the nature of the interaction between the enzyme and this class of competitive inhibitors. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants and the structural basis for further structure-activity relationship studies.


Assuntos
Cisteína Sintase , Staphylococcus aureus Resistente à Meticilina , Animais , Ácidos Carboxílicos , Colistina/farmacologia , Ciclopropanos , Ovinos , Staphylococcus
3.
ACS Med Chem Lett ; 11(5): 790-797, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435386

RESUMO

In ϒ-proteobacteria and Actinomycetales, cysteine biosynthetic enzymes are indispensable during persistence and become dispensable during growth or acute infection. The biosynthetic machinery required to convert inorganic sulfur into cysteine is absent in mammals; therefore, it is a suitable drug target. We searched for inhibitors of Salmonella serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of l-cysteine biosynthesis. The virtual screening of three ChemDiv focused libraries containing 91 243 compounds was performed to identify potential SAT inhibitors. Scaffold similarity and the analysis of the overall physicochemical properties allowed the selection of 73 compounds that were purchased and evaluated on the recombinant enzyme. Six compounds displaying an IC50 <100 µM were identified via an indirect assay using Ellman's reagent and then tested on a Gram-negative model organism, with one of them being able to interfere with bacterial growth via SAT inhibition.

4.
Nutrients ; 11(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394746

RESUMO

Pelargonidins are anthocyanidins thought to be beneficial for the human health, although controversies exist over the doses needed and the unclear mechanism of action, along with poor systemic bioavailability. One putative target of pelargonidins is the aryl hydrocarbon receptor (AhR). A synthetic pelargonidin (Mt-P) was synthesized by the methylation of the pelargonidin (the natural compound indicated as P). Mt-P transactivated the AhR with an EC50 of 1.97 µM and was ~2-fold more potent than the natural compound. In vitro Mt-P attenuated pro-inflammatory activities of Raw264.7 macrophage cells in an AhR-dependent manner. In vivo, administration of the Mt-P in Balb/c mice resulted in a dose-dependent attenuation of signs and symptoms of colitis induced by TNBS. A dose of 5 mg/kg Mt-P, but not the natural compound P, reversed intestinal inflammation and increased expression of Tnf-α, Ifn-Æ´, and Il-6, while promoted the expansion of regulatory T cells and M2 macrophages. In C57BL/6J mice fed a high fat diet (HFD), Mt-P attenuated body weight gain, intestinal and liver inflammation, and ameliorated insulin sensitivity, while worsened liver steatosis by up-regulating the liver expression of Cd36 and Apo100b. These effects were abrogated by AhR gene ablation. Mt-P is a synthetic pelargonidin endowed with robust AhR agonist activity that exerts beneficial effects in murine models of inflammation and metabolic dysfunction.


Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Antocianinas/química , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Fígado Gorduroso/tratamento farmacológico , Células Hep G2 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/genética
5.
J Enzyme Inhib Med Chem ; 34(1): 31-43, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30362368

RESUMO

The lack of efficacy of current antibacterials to treat multidrug resistant bacteria poses a life-threatening alarm. In order to develop enhancers of the antibacterial activity, we carried out a medicinal chemistry campaign aiming to develop inhibitors of enzymes that synthesise cysteine and belong to the reductive sulphur assimilation pathway, absent in mammals. Previous studies have provided a novel series of inhibitors for O-acetylsulfhydrylase - a key enzyme involved in cysteine biosynthesis. Despite displaying nanomolar affinity, the most active representative of the series was not able to interfere with bacterial growth, likely due to poor permeability. Therefore, we rationally modified the structure of the hit compound with the aim of promoting their passage through the outer cell membrane porins. The new series was evaluated on the recombinant enzyme from Salmonella enterica serovar Typhimurium, with several compounds able to keep nanomolar binding affinity despite the extent of chemical manipulation.


Assuntos
Antibacterianos/farmacologia , Ácidos Carboxílicos/farmacologia , Ciclopropanos/farmacologia , Cisteína Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Ciclopropanos/síntese química , Ciclopropanos/química , Cisteína Sintase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Salmonella typhimurium/enzimologia , Relação Estrutura-Atividade
6.
J Enzyme Inhib Med Chem ; 33(1): 1444-1452, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30221554

RESUMO

Several bacteria rely on the reductive sulphur assimilation pathway, absent in mammals, to synthesise cysteine. Reduction of virulence and decrease in antibiotic resistance have already been associated with mutations on the genes that codify cysteine biosynthetic enzymes. Therefore, inhibition of cysteine biosynthesis has emerged as a promising strategy to find new potential agents for the treatment of bacterial infection. Following our previous efforts to explore OASS inhibition and to expand and diversify our library, a scaffold hopping approach was carried out, with the aim of identifying a novel fragment for further development. This novel chemical tool, endowed with favourable pharmacological characteristics, was successfully developed, and a preliminary Structure-Activity Relationship investigation was carried out.


Assuntos
Cisteína Sintase/antagonistas & inibidores , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/genética , Sítios de Ligação , Bioensaio , Simulação por Computador , DNA Recombinante/química , DNA Recombinante/genética , Ligantes , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
7.
J Chem Inf Model ; 58(3): 710-723, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29481752

RESUMO

Saturation transfer difference (STD) is an NMR technique conventionally applied in drug discovery to identify ligand moieties relevant for binding to protein cavities. This is important to direct medicinal chemistry efforts in small-molecule optimization processes. However, STD does not provide any structural details about the ligand-target complex under investigation. Herein, we report the application of a new integrated approach, which combines enhanced sampling methods with STD experiments, for the characterization of ligand-target complexes that are instrumental for drug design purposes. As an example, we have studied the interaction between StOASS-A, a potential antibacterial target, and an inhibitor previously reported. This approach allowed us to consider the ligand-target complex from a dynamic point of view, revealing the presence of an accessory subpocket which can be exploited to design novel StOASS-A inhibitors. As a proof of concept, a small library of derivatives was designed and evaluated in vitro, displaying the expected activity.


Assuntos
Cisteína Sintase/antagonistas & inibidores , Cisteína Sintase/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Salmonella typhimurium/enzimologia , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cisteína Sintase/química , Desenho de Fármacos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Salmonella typhimurium/efeitos dos fármacos , Termodinâmica
8.
J Enzyme Inhib Med Chem ; 31(sup4): 78-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27578398

RESUMO

Cysteine is a building block for many biomolecules that are crucial for living organisms. O-Acetylserine sulfhydrylase (OASS), present in bacteria and plants but absent in mammals, catalyzes the last step of cysteine biosynthesis. This enzyme has been deeply investigated because, beside the biosynthesis of cysteine, it exerts a series of "moonlighting" activities in bacteria. We have previously reported a series of molecules capable of inhibiting Salmonella typhimurium (S. typhymurium) OASS isoforms at nanomolar concentrations, using a combination of computational and spectroscopic approaches. The cyclopropane-1,2-dicarboxylic acids presented herein provide further insights into the binding mode of small molecules to OASS enzymes. Saturation transfer difference NMR (STD-NMR) was used to characterize the molecule/enzyme interactions for both OASS-A and B. Most of the compounds induce a several fold increase in fluorescence emission of the pyridoxal 5'-phosphate (PLP) coenzyme upon binding to either OASS-A or OASS-B, making these compounds excellent tools for the development of competition-binding experiments.


Assuntos
Ciclopropanos/farmacologia , Cisteína Sintase/antagonistas & inibidores , Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fluorometria , Ciclopropanos/síntese química , Ciclopropanos/química , Cisteína Sintase/química , Cisteína Sintase/metabolismo , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
9.
J Med Chem ; 59(6): 2567-78, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26894308

RESUMO

Cysteine is a building block for several biomolecules that are crucial for living organisms. The last step of cysteine biosynthesis is catalyzed by O-acetylserine sulfydrylase (OASS), a highly conserved pyridoxal 5'-phosphate (PLP)-dependent enzyme, present in different isoforms in bacteria, plants, and nematodes, but absent in mammals. Beside the biosynthesis of cysteine, OASS exerts a series of "moonlighting" activities in bacteria, such as transcriptional regulation, contact-dependent growth inhibition, swarming motility, and induction of antibiotic resistance. Therefore, the discovery of molecules capable of inhibiting OASS would be a valuable tool to unravel how this protein affects the physiology of unicellular organisms. As a continuation of our efforts toward the synthesis of OASS inhibitors, in this work we have used a combination of computational and spectroscopic approaches to rationally design, synthesize, and test a series of substituted 2-phenylcyclopropane carboxylic acids that bind to the two S. typhymurium OASS isoforms at nanomolar concentrations.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Ciclopropanos/síntese química , Ciclopropanos/farmacologia , Cisteína Sintase/antagonistas & inibidores , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/enzimologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Isoenzimas/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ligação Proteica , Fosfato de Piridoxal/química , Salmonella typhimurium/crescimento & desenvolvimento , Relação Estrutura-Atividade
10.
Eur J Med Chem ; 92: 377-86, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25585008

RESUMO

Epigenetics alterations including histone methylation and acetylation, and DNA methylation, are thought to play important roles in the onset and progression of cancer in numerous tumour cell lines. Lysine-specific demethylase 1 (LSD1 or KDM1A) is highly expressed in different cancer types and inhibiting KDM1A activity seems to have high therapeutic potential in cancer treatment. In the recent years, several inhibitors of KDM1A have been prepared and disclosed. The majority of these derivatives were designed based on the structure of tranylcypromine, as the cyclopropane core is responsible for the covalent interaction between the inhibitor and the catalytic domain of KDM proteins. In this study, we have further extended the SAR regarding compounds 1a-e, which were recently found to inhibit KDM1A with good activity. The decoration of the phenyl ring at the ß-position of the cyclopropane ring with small functional groups, mostly halogenated, and in particular at the meta position, led to a significant improvement of the inhibitory activity against KDM1A, as exemplified by compound 44a, which has a potency in the low nanomolar range (31 nM).


Assuntos
Ciclopropanos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Ciclopropanos/síntese química , Ciclopropanos/química , Relação Dose-Resposta a Droga , Histona Desmetilases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA