Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Sci Pollut Res Int ; 31(5): 7043-7057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157168

RESUMO

A lab-scale gravity-driven bioreactor (GDB) was designed and constructed to evaluate the simultaneous treatment of black liquor and domestic wastewater. The GDB was operated with a mixture of black liquor and domestic wastewater at a ratio of 1:1 and maintained at an average organic loading rate of 1235 mg-COD/L-Day. The wastewater was fed to the primary sedimentation tank at a flow rate of approximately 12 mL/min and subsequently passed through serially connected anaerobic and aerobic chambers with the same flow rate. Each wastewater sample was allowed to undergo a hydraulic retention time of approximately 72 h, ensuring effective treatment. The GDB was actively operated for nine samples (W1-W9) at a weekly frequency. The entire process was conducted within the workstation's ambient temperature range of 30-35 °C to sustain microbial activity and treatment efficiency in an open environment. The performance of the GDB was evaluated in terms of various pollution indicators, including COD, BOD5, lignin removal, TDS, TSS, EC, PO43-, SO42-, microbial load (CFU/mL and MPN index), total nitrogen, and color reduction. The results showed that the GDB achieved promising treatment efficiencies: 84.5% for COD, 71.80% for BOD5, 82.8% for TDS, 100% for TSS, 74.71% for E.C., 67.25% for PO43-, 81% for SO42-, and 69.36% for TN. Additionally, about 80% reduction in lignin content and 57% color reduction were observed after the treatment. The GDB substantially reduced microbial load in CFU/mL (77.98%) and MPN (90%). This study marks the first to report on wastewater treatment from two different sources (black liquor and domestic wastewater) using a simple GDB design. Furthermore, it highlights the GDB's potential as a cost-effective, environmentally friendly, and efficient solution for wastewater treatment, with no need for supplementary chemical or physical agents and zero operational costs.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Lignina , Reatores Biológicos
2.
Genet Med ; 25(9): 100900, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226891

RESUMO

PURPOSE: 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. METHODS: We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. RESULTS: We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. CONCLUSION: Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Homozigoto , Transtornos do Neurodesenvolvimento/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA , Linhagem , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
3.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041148

RESUMO

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Assuntos
Síndrome de Goldenhar , Animais , Camundongos , Síndrome de Goldenhar/patologia , Assimetria Facial , Linhagem , Fatores de Transcrição Forkhead
4.
Klin Padiatr ; 234(3): 123-129, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34544175

RESUMO

BACKGROUND: Xeroderma pigmentosum (XP) is a rare recessively inherited disorder that presents clinical and genetic heterogeneity. Mutations in eight genes, of which seven are involved in nucleotide excision repair (NER) pathway have been reported to cause the XP. METHODS AND RESULTS: Three large consanguineous families of Pakistani origin displaying typical clinical hallmarks of XP were evaluated at clinical and molecular level. Homozygosity mapping using microsatellite markers established linkage of the families to XPC gene on chromosome 3p25.1. Sanger sequencing of the XPC gene identified a novel homozygous single bp deletion [NM_004628.5; c.1934del; p.(Pro645Leufs*5)] and two previously reported mutations that included a nonsense [c.1243 C>T; p.(Arg415*)] and a splice acceptor site (c.2251-1 G>C), all segregating with the disease phenotypes in the families. CONCLUSION: This report has extended the spectrum of mutations in the XPC gene and will also facilitate in diagnosis of XP and counselling of families inheriting it, which is the only inevitable tool for preventing the disease occurrence in future generations.


Assuntos
Proteínas de Ligação a DNA , Xeroderma Pigmentoso , Consanguinidade , Proteínas de Ligação a DNA/genética , Homozigoto , Humanos , Mutação , Xeroderma Pigmentoso/diagnóstico , Xeroderma Pigmentoso/genética
5.
Sci Rep ; 11(1): 16412, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385517

RESUMO

Cohen syndrome (CS) is a rare syndromic form of rod-cone dystrophy. Recent case reports have suggested that cystoid maculopathy (CM) could affect CS patients with an early onset and high prevalence. Our study aims at improving our understanding and management of CM in CS patients through a retrospective case series of ten CS patients with identified pathogenic variants in VPS13B. Longitudinal optical coherence tomography (OCT) imaging was performed and treatment with carbonic anhydrase inhibitors (CAI) was provided to reduce the volume of cystoid spaces. CM affected eight out of ten patients in our cohort. The youngest patient showed a strong progression of macular cysts from the age of 4.5 to 5 years despite oral CAI medication. Other teenage and young adult patients showed stable macular cysts with and without treatment. One patient showed a moderate decrease of cystoid spaces in the absence of treatment at 22 years of age. Through a correlative analysis we found that the volume of cystoid spaces was positively correlated to the thickness of peripheral and macular photoreceptor-related layers. This study suggests that CAI treatments may not suffice to improve CM in CS patients, and that CM may resolve spontaneously during adulthood as photoreceptor dystrophy progresses.


Assuntos
Dedos/anormalidades , Deficiência Intelectual/patologia , Degeneração Macular/patologia , Edema Macular/patologia , Microcefalia/patologia , Hipotonia Muscular/patologia , Miopia/patologia , Obesidade/patologia , Degeneração Retiniana/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Dedos/patologia , Humanos , Masculino , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Adulto Jovem
6.
Environ Sci Pollut Res Int ; 28(30): 41135-41148, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33779899

RESUMO

Maize/soybean relay intercropping system is a popular cultivation system to obtain high yields of both crops with reduced inputs. However, shading by maize decreases the photosynthetically active radiation, reaching the soybean canopy in maize/soybean relay intercropping system, which reduces soybean radiation use efficiency and competitiveness. Here, we reveal that compact maize in maize/soybean relay intercropping system enhances the photosynthetically active radiation transmittance, leaf area index, dry matter production, radiation use efficiency, and competitiveness of soybean and compensates the slight maize yield loss by substantially increasing soybean yield. In this experiment, soybean was relay intercropped with different maize types (SI, spreading maize; SII, semi-compact maize; and SIII, compact maize) in maize/soybean relay intercropping system, and all the relay intercropping treatments were compared with sole cropping systems of soybean and maize. Results revealed that SIII significantly enhanced the soybean radiation use efficiency (by 77%, from 0.35 g MJ-1 in SI to 0.61 g MJ-1 in SIII) and total radiation use efficiency (soybean radiation use efficiency + maize radiation use efficiency) of maize/soybean relay intercropping system (by 5%, from 3.53 g MJ-1 in SI to 3.73 g MJ-1 in SIII). Similarly, SIII improved the competitiveness (by 62%, from 0.58% in SI to 0.94% in SIII) of soybean but reduced the competitiveness (by 38%, from 1.73% in SI to 1.07% in SIII) of maize, which, in turn, considerably increased soybean yield by maintaining maize yield. On average, over the 2 years, in SIII, relay-intercropped soybean produced 89% of the sole soybean yield, and relay-intercropped maize produced 95% of the sole maize yield. Besides, treatment SIII achieved the mean highest land equivalent ratio value of 1.84 in both years. Thus, enhanced radiation use efficiency of soybean, especially during the co-growth period, was the primary factor responsible for the high productivity of the maize/soybean relay intercropping system.


Assuntos
Glycine max , Zea mays , Agricultura , Produtos Agrícolas , Grão Comestível , Folhas de Planta
7.
Plants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203059

RESUMO

Heavy metal stress is a leading environmental issue reducing crop growth and productivity, particularly in arid and semi-arid agro-ecological zones. Cadmium (Cd), a non-redox heavy metal, can indirectly increase the production of reactive oxygen species (ROS), inducing cell death. A pot experiment was conducted to investigate the effects of different concentrations of Cd (0, 5, 25, 50, 100 µM) on physiological and biochemical parameters in two sorghum (Sorghum bicolor L.) cultivars: JS-2002 and Chakwal Sorghum. The results showed that various concentrations of Cd significantly increased the Cd uptake in both cultivars; however, the uptake was higher in JS-2002 compared to Chakwal Sorghum in leaf, stem and root. Regardless of the cultivars, there was a higher accumulation of the Cd in roots than in shoots. The Cd stress significantly reduced the growth and increased the electrolyte leakage (EL), hydrogen peroxide (H2O2) concentration and malondialdehyde (MDA) content in both cultivars, but the Chakwal Sorghum showed more pronounced oxidative damage than the JS-2002, as reflected by higher H2O2, MDA and EL. Moreover, Cd stress, particularly 50 µM and 100 µM, decreased the activity of different antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the JS-2002 exhibited higher SOD, POD and CAT activities than the Chakwal Sorghum under different Cd-levels. These findings revealed that JS-2002 had a stronger Cd enrichment capacity and also exhibited a better tolerance to Cd stress due to its efficient antioxidant defense system than Chakwal Sorghum. The present study provides the available information about Cd enrichment and tolerance in S. bicolor, which is used as an important agricultural crop for livestock feed in arid and semi-arid regions.

8.
Iran J Basic Med Sci ; 23(9): 1139-1145, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32963735

RESUMO

OBJECTIVES: Lapachone is a natural naphthoquinone-derived compound found in Tabebuia avellanedae. It is well-known for its analgesic, anti-inflammatory, anti-microbial, diuretic, and anti-cancerous effects. However, the wound-healing effects of this compound are not known yet. The aim of this study was to investigate the wound healing activity of naphthoquinones (α-lapachone and ß-lapachone) from Handroanthus impetiginosus. MATERIALS AND METHODS: Expression of Sirt3, migration-related proteins (Rac1, Cdc42, α-Pak) and angiogenesis-related protein of vascular endothelial growth factor (VEGF) was monitored using western blot analysis. Blood vessel formation and tissue development were monitored by angiogenesis assay and hematoxylin & eosin (H & E) staining, respectively on mouse skin tissue samples. Both α-lapachone and ß-lapachone increased Sirt3 expression in vivo, but only ß-lapachone increased Sirt3 expression in vitro. RESULTS: Both the compounds accelerated wound healing in cultured skin cells as well as mouse skin; however, ß-lapachone was more effective at lower concentrations. Both of the compounds increased the expression of migration-related proteins both in vitro and in vivo. Similarly, α-lapachone and ß-lapachone increased VEGF expression, tissue development and blood vessel formation in mouse skin. CONCLUSION: These findings indicated that α-lapachone and ß-lapachone are novel Sirt3 activators, and Sirt3 has a role in wound healing. Thus, Sirt3 and its regulators come out as a novel target and potential drug candidates, respectively in the important field of cutaneous wound healing.

9.
Mol Genet Genomic Med ; 7(9): e902, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347285

RESUMO

BACKGROUND: Jalili syndrome (JS) is a rare cone-rod dystrophy (CRD) associated with amelogenesis imperfecta (AI). The first clinical presentation of JS patients was published in 1988 by Jalili and Smith. Pathogenic mutations in the Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 4 (CNNM4) magnesium transporter protein have been reported as the leading cause of this anomaly. METHODS: In the present study, a clinical and genetic investigation was performed in a consanguineous family of Pakistani origin, showing characteristic features of JS. Sanger sequencing was successfully used to identify the causative variant in CNNM4. Molecular dynamics (MD) simulations were performed to study the effect of amino acid change over CNNM4 protein. RESULTS: Sequence analysis of CNNM4 revealed a novel missense variant (c.1220G>T, p.Arg407Leu) in exon-1 encoding cystathionine-ß-synthase (CBS) domain. To comprehend the mutational consequences in the structure, the mutant p.Arg407Leu was modeled together with a previously reported variant (c.1484C>T, p.Thr495Ile) in the same domain. Additionally, docking analysis deciphered the binding mode of the adenosine triphosphate (ATP) cofactor. Furthermore, 60ns MD simulations were carried out on wild type (p.Arg407/p.Thr495) and mutants (p.Arg407Leu/p.Thr495Ile) to understand the structural and energetic changes in protein structure and its dynamic behavior. An evident conformational shift of ATP in the binding site was observed in simulated mutants disrupting the native ATP-binding mode. CONCLUSION: The novel identified variant in CNNM4 is the first report from the Pakistani population. Overall, the study is valuable and may give a novel insight into metal transport in visual function and biomineralization.


Assuntos
Amelogênese Imperfeita/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Distrofias de Cones e Bastonetes/genética , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Adolescente , Criança , Cristalografia por Raios X , Cistationina beta-Sintase/química , Éxons , Feminino , Humanos , Masculino , Mutação , Paquistão , Linhagem , Conformação Proteica , Domínios Proteicos , Análise de Sequência de Proteína
10.
Am J Hum Genet ; 104(6): 1073-1087, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079899

RESUMO

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.


Assuntos
Anormalidades Craniofaciais/etiologia , Dineínas/genética , Deficiência Intelectual/etiologia , Malformações Arteriovenosas Intracranianas/etiologia , Microcefalia/etiologia , Mutação , Peixe-Zebra/crescimento & desenvolvimento , Adulto , Alelos , Sequência de Aminoácidos , Animais , Pré-Escolar , Anormalidades Craniofaciais/patologia , Dineínas/química , Dineínas/metabolismo , Exoma , Feminino , Homozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Malformações Arteriovenosas Intracranianas/patologia , Masculino , Microcefalia/patologia , Linhagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
J Bone Miner Res ; 34(2): 375-386, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30395363

RESUMO

Polydactyly is a common congenital anomaly of the hand and foot. Postaxial polydactyly (PAP) is characterized by one or more posterior or postaxial digits. In a Pakistani family with autosomal recessive nonsyndromic postaxial polydactyly type A (PAPA), we performed genomewide genotyping, linkage analysis, and exome and Sanger sequencing. Exome sequencing revealed a homozygous nonsense variant (c.478C>T, p.[Arg160*]) in the FAM92A gene within the mapped region on 8q21.13-q24.12 that segregated with the PAPA phenotype. We found that FAM92A is expressed in the developing mouse limb and E11.5 limb bud including the progress zone and the apical ectodermal ridge, where it strongly localizes at the cilia level, suggesting an important role in limb patterning. The identified variant leads to a loss of the FAM92A/Chibby1 complex that is crucial for ciliogenesis and impairs the recruitment and the colocalization of FAM92A with Chibby1 at the base of the cilia. In addition, we show that Fam92a-/- homozygous mice also exhibit an abnormal digit morphology, including metatarsal osteomas and polysyndactyly, in addition to distinct abnormalities on the deltoid tuberosity of their humeri. In conclusion, we present a new nonsyndromic PAPA ciliopathy due to a loss-of-function variant in FAM92A. © 2018 American Society for Bone and Mineral Research.


Assuntos
Ciliopatias , Códon sem Sentido , Exoma , Dedos/anormalidades , Homozigoto , Polidactilia , Proteínas , Dedos do Pé/anormalidades , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Feminino , Dedos/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Polidactilia/genética , Polidactilia/metabolismo , Polidactilia/patologia , Proteínas/genética , Proteínas/metabolismo , Dedos do Pé/patologia , Sequenciamento do Exoma
12.
Am J Hum Genet ; 103(4): 568-578, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290152

RESUMO

Infantile and childhood-onset cataracts form a heterogeneous group of disorders; among the many genetic causes, numerous pathogenic variants in additional genes associated with autosomal-recessive infantile cataracts remain to be discovered. We identified three consanguineous families affected by bilateral infantile cataracts. Using exome sequencing, we found homozygous loss-of-function variants in DNMBP: nonsense variant c.811C>T (p.Arg271∗) in large family F385 (nine affected individuals; LOD score = 5.18 at θ = 0), frameshift deletion c.2947_2948del (p.Asp983∗) in family F372 (two affected individuals), and frameshift variant c.2852_2855del (p.Thr951Metfs∗41) in family F3 (one affected individual). The phenotypes of all affected individuals include infantile-onset cataracts. RNAi-mediated knockdown of the Drosophila ortholog still life (sif), enriched in lens-secreting cells, affects the development of these cells as well as the localization of E-cadherin, alters the distribution of septate junctions in adjacent cone cells, and leads to a ∼50% reduction in electroretinography amplitudes in young flies. DNMBP regulates the shape of tight junctions, which correspond to the septate junctions in invertebrates, as well as the assembly pattern of E-cadherin in human epithelial cells. E-cadherin has an important role in lens vesicle separation and lens epithelial cell survival in humans. We therefore conclude that DNMBP loss-of-function variants cause infantile-onset cataracts in humans.


Assuntos
Catarata/genética , Proteínas do Citoesqueleto/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Perda de Heterozigosidade/genética , Adulto , Alelos , Animais , Caderinas/genética , Criança , Drosophila/genética , Células Epiteliais/patologia , Exoma/genética , Feminino , Homozigoto , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Junções Íntimas/patologia
13.
Int J Dermatol ; 56(12): 1406-1413, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29130490

RESUMO

BACKGROUND: Genodermatoses represent genetic anomalies of skin tissues including hair follicles, sebaceous glands, eccrine glands, nails, and teeth. Ten consanguineous families segregating various genodermatosis phenotypes were investigated in the present study. METHODS: Homozygosity mapping, exome, and Sanger sequencing were employed to search for the disease-causing variants in the 10 families. RESULTS: Exome sequencing identified seven homozygous sequence variants in different families, including: c.27delT in FERMT1; c.836delA in ABHD5; c.2453C>T in ERCC5; c.5314C>T in COL7A1; c.1630C>T in ALOXE3; c.502C>T in PPOX; and c.10G>T in ALDH3A2. Sanger sequencing revealed three homozygous variants: c.1718 + 2A>G in FERMT1; c.10459A>T in FLG; and c.92delT in the KRT14 genes as the underlying genetic cause of skin phenotypes. CONCLUSION: This study supports the use of exome sequencing as a powerful, efficient tool for identifying genes that underlie rare monogenic skin disorders.


Assuntos
Doenças Raras/genética , Dermatopatias Genéticas/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Aldeído Oxirredutases/genética , Vesícula/genética , Colágeno Tipo VII/genética , Consanguinidade , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Simples/genética , Exoma , Feminino , Proteínas Filagrinas , Flavoproteínas/genética , Homozigoto , Humanos , Mutação INDEL , Eritrodermia Ictiosiforme Congênita/genética , Ictiose Vulgar/genética , Ictiose Lamelar/genética , Proteínas de Filamentos Intermediários/genética , Queratina-14/genética , Erros Inatos do Metabolismo Lipídico/genética , Lipoxigenase/genética , Masculino , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Doenças Musculares/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Linhagem , Doenças Periodontais/genética , Fenótipo , Transtornos de Fotossensibilidade/genética , Porfiria Variegada/genética , Protoporfirinogênio Oxidase/genética , Síndrome de Sjogren-Larsson/genética , Fatores de Transcrição/genética , Xeroderma Pigmentoso/genética
14.
Congenit Anom (Kyoto) ; 57(2): 45-51, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27577507

RESUMO

Acromesomelic dysplasia Grebe type (AMDG) is characterized by severe knob like non-functional fingers and short acromesomelic limbs, and is inherited in an autosomal recessive manner. Disease causing sequence variants in the GDF5 (Growth Differentiation Factor 5) gene located on chromosome 20q11.22 are responsible for causing AMDG. In the study, presented here, two consanguineous families with AMDG were clinically and genetically characterized. After establishing linkage in the two families (A and B) to GDF5 gene on chromosome 20q11.22, Sanger DNA sequencing was performed in all available affected and unaffected members. Sequence analysis of the GDF5 gene revealed two novel variants including a duplication (c.157_158dupC, p.Leu53Profs*41) in family A, and a nonsense (p.Trp291*) in family B. Our findings extend the body of evidence that supports the importance of GDF5 in the development of limbs.


Assuntos
Consanguinidade , Nanismo/genética , Fator 5 de Diferenciação de Crescimento/genética , Anormalidades Musculoesqueléticas/genética , Mutação/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Nanismo/patologia , Feminino , Ligação Genética , Homozigoto , Humanos , Masculino , Anormalidades Musculoesqueléticas/patologia , Osteocondrodisplasias/patologia , Linhagem , Homologia de Sequência de Aminoácidos , Adulto Jovem
15.
Hum Genomics ; 10(1): 26, 2016 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-27421267

RESUMO

BACKGROUND: The recent availability of whole-exome sequencing has opened new possibilities for the evaluation of individuals with genetically undiagnosed intellectual disability. RESULTS: We report two affected siblings, offspring of first-cousin parents, with intellectual disability, hypotonia, short stature, growth hormone deficiency, and delayed bone age. All members of the nuclear family were genotyped, and exome sequencing was performed in one of the affected individuals. We used an in-house algorithm (CATCH v1.1) that combines homozygosity mapping with exome sequencing results and provides a list of candidate variants. One identified novel homozygous missense variant in KALRN (NM_003947.4:c.3644C>A: p.(Thr1215Lys)) was predicted to be pathogenic by all pathogenicity prediction software used (SIFT, PolyPhen, Mutation Taster). KALRN encodes the protein kalirin, which is a GTP-exchange factor protein with a reported role in cytoskeletal remodeling and dendritic spine formation in neurons. It is known that mice with ablation of Kalrn exhibit age-dependent functional deficits and behavioral phenotypes. CONCLUSION: Exome sequencing provided initial evidence linking KALRN to monogenic intellectual disability in man, and we propose that KALRN is the causative gene for the autosomal recessive phenotype in this family.


Assuntos
Deficiências do Desenvolvimento/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deficiência Intelectual/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Criança , Consanguinidade , Análise Mutacional de DNA , Exoma/genética , Feminino , Estudos de Associação Genética , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto
16.
Eur J Hum Genet ; 24(8): 1223-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26695873

RESUMO

Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the ß-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.


Assuntos
Alopecia/genética , Cadeias beta de Integrinas/genética , Deficiência Intelectual/genética , Fenótipo , Anormalidades Dentárias/genética , Adolescente , Adulto , Alopecia/diagnóstico , Criança , Feminino , Humanos , Cadeias beta de Integrinas/química , Deficiência Intelectual/diagnóstico , Masculino , Mutação de Sentido Incorreto , Linhagem , Domínios Proteicos , Síndrome , Anormalidades Dentárias/diagnóstico
17.
PLoS One ; 10(6): e0129811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26115030

RESUMO

Ectodermal dysplasias (EDs) are a large heterogeneous group of inherited disorders exhibiting abnormalities in ectodermally derived appendages such as hair, nails, teeth and sweat glands. EDs associated with reticulated pigmentation phenotype are rare entities for which the genetic basis and pathophysiology are not well characterized. The present study describes a five generation consanguineous Pakistani family segregating an autosomal recessive form of a novel type of ectodermal dysplasia. The affected members present with sparse and woolly hair, severe nail dystrophy and reticulate skin pigmentation. After exclusion of known gene loci related with other skin disorders, genome-wide linkage analysis was performed using Illumina HumanOmniExpress beadchip SNP arrays. We linked this form of ED to human chromosome 18p11.32-p11.31 flanked by the SNPs rs9284390 (0.113Mb) and rs4797100 (3.14 Mb). A maximum two-point LOD score of 3.3 was obtained with several markers along the disease interval. The linkage interval of 3.03 Mb encompassed seventeen functional genes. However, sequence analysis of all these genes did not discover any potentially disease causing-variants. The identification of this novel locus provides additional information regarding the mapping of a rare form of ED. Further research, such as the use of whole-genome sequencing, would be expected to reveal any pathogenic mutation within the disease locus.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 18 , Displasia Ectodérmica/genética , Locos de Características Quantitativas , Adolescente , Adulto , Criança , Consanguinidade , Análise Mutacional de DNA , Displasia Ectodérmica/diagnóstico , Feminino , Estudos de Associação Genética , Cabelo/anormalidades , Humanos , Escore Lod , Masculino , Unhas Malformadas/genética , Linhagem , Fenótipo , Anormalidades da Pele/genética , Pigmentação da Pele/genética , Adulto Jovem
18.
Sci Rep ; 5: 9965, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943428

RESUMO

Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigrees. DNA samples from eight families with autosomal recessive retinal dystrophies were subjected to genome wide homozygosity mapping (seven by SNP arrays and one by STR markers) and genes comprised within the detected homozygous regions were analyzed by Sanger sequencing. All families displayed consistent autozygous genomic regions. Sequence analysis of candidate genes identified four previously-reported mutations in CNGB3, CNGA3, RHO, and PDE6A, as well as three novel mutations: c.2656C > T (p.L886F) in RPGRIP1, c.991G > C (p.G331R) in CNGA3, and c.413-1G > A (IVS6-1G > A) in CNGB1. This latter mutation impacted pre-mRNA splicing of CNGB1 by creating a -1 frameshift leading to a premature termination codon. In addition to better delineating the genetic landscape of inherited retinal dystrophies in Pakistan, our data confirm that combining homozygosity mapping and candidate gene sequencing is a powerful approach for mutation identification in populations where consanguineous unions are common.


Assuntos
Mapeamento Cromossômico/métodos , Consanguinidade , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Displasia Retiniana/genética , Adolescente , Adulto , Criança , Família , Feminino , Marcadores Genéticos/genética , Homozigoto , Humanos , Masculino , Mutação/genética , Paquistão , Linhagem , Análise de Sequência de DNA/métodos , Adulto Jovem
20.
Hum Mol Genet ; 23(12): 3289-98, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24482543

RESUMO

Cyclic AMP (cAMP) production, which is important for mechanotransduction within the inner ear, is catalyzed by adenylate cyclases (AC). However, knowledge of the role of ACs in hearing is limited. Previously, a novel autosomal recessive non-syndromic hearing impairment locus DFNB44 was mapped to chromosome 7p14.1-q11.22 in a consanguineous family from Pakistan. Through whole-exome sequencing of DNA samples from hearing-impaired family members, a nonsense mutation c.3112C>T (p.Arg1038*) within adenylate cyclase 1 (ADCY1) was identified. This stop-gained mutation segregated with hearing impairment within the family and was not identified in ethnically matched controls or within variant databases. This mutation is predicted to cause the loss of 82 amino acids from the carboxyl tail, including highly conserved residues within the catalytic domain, plus a calmodulin-stimulation defect, both of which are expected to decrease enzymatic efficiency. Individuals who are homozygous for this mutation had symmetric, mild-to-moderate mixed hearing impairment. Zebrafish adcy1b morphants had no FM1-43 dye uptake and lacked startle response, indicating hair cell dysfunction and gross hearing impairment. In the mouse, Adcy1 expression was observed throughout inner ear development and maturation. ADCY1 was localized to the cytoplasm of supporting cells and hair cells of the cochlea and vestibule and also to cochlear hair cell nuclei and stereocilia. Ex vivo studies in COS-7 cells suggest that the carboxyl tail of ADCY1 is essential for localization to actin-based microvilli. These results demonstrate that ADCY1 has an evolutionarily conserved role in hearing and that cAMP signaling is important to hair cell function within the inner ear.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/patologia , Adenilil Ciclases/química , Animais , Células COS , Chlorocebus aethiops , Códon sem Sentido , Citoplasma/metabolismo , Orelha Interna/crescimento & desenvolvimento , Feminino , Perda Auditiva/enzimologia , Humanos , Células Labirínticas de Suporte/metabolismo , Masculino , Camundongos , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA