Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 756: 110010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642632

RESUMO

PARP1 plays a pivotal role in DNA repair within the base excision pathway, making it a promising therapeutic target for cancers involving BRCA mutations. Current study is focused on the discovery of PARP inhibitors with enhanced selectivity for PARP1. Concurrent inhibition of PARP1 with PARP2 and PARP3 affects cellular functions, potentially causing DNA damage accumulation and disrupting immune responses. In step 1, a virtual library of 593 million compounds has been screened using a shape-based screening approach to narrow down the promising scaffolds. In step 2, hierarchical docking approach embedded in Schrödinger suite was employed to select compounds with good dock score, drug-likeness and MMGBSA score. Analysis supplemented with decomposition energy, molecular dynamics (MD) simulations and hydrogen bond frequency analysis, pinpointed that active site residues; H862, G863, R878, M890, Y896 and F897 are crucial for specific binding of ZINC001258189808 and ZINC000092332196 with PARP1 as compared to PARP2 and PARP3. The binding of ZINC000656130962, ZINC000762230673, ZINC001332491123, and ZINC000579446675 also revealed interaction involving two additional active site residues of PARP1, namely N767 and E988. Weaker or no interaction was observed for these residues with PARP2 and PARP3. This approach advances our understanding of PARP-1 specific inhibitors and their mechanisms of action, facilitating the development of targeted therapeutics.


Assuntos
Antineoplásicos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Domínio Catalítico , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Ligação de Hidrogênio
2.
Proteomics ; 22(1-2): e2100171, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561969

RESUMO

Human leukocyte antigen (HLA) class I has more than 18,000 alleles, each of which binds to a set of unique peptides from the cellular degradome. Deciphering the interaction between antigenic peptides and HLA proteins is crucial for understanding immune responses in autoimmune diseases and cancer. In this study, we aimed to characterize the peptidome that binds to HLA-A*33:03, which is one of the most prevalent HLA-A alleles in the Northeast Asian population, but poorly studied. For this purpose, we analyzed the HLA-A*33:03 monoallelic B cell line using immunoprecipitation of HLA-A and peptide complexes, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, we identified 5731 unique peptides that were associated with HLA A*33:03, and experimentally validated the affinity of 40 peptides for HLA-A*33:03 and their stability in HLA A*33:03-peptides complexes. To our knowledge, this study represents the largest dataset of peptides associated with HLA-A*33:03. Also, this is the first study in which HLA A*33:03-associated peptides were experimentally validated.


Assuntos
Antígenos HLA-A , Espectrometria de Massas em Tandem , Cromatografia Líquida , Epitopos , Humanos , Imunoprecipitação
3.
Cancers (Basel) ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225122

RESUMO

Preoperative chemoradiotherapy (PCRT) and subsequent surgery is the standard multimodal treatment for locally advanced rectal cancer (LARC), albeit PCRT response varies among the individuals. This creates a dire necessity to identify a predictive model to forecast treatment response outcomes and identify patients who would benefit from PCRT. In this study, we performed a gene expression study using formalin-fixed paraffin-embedded (FFPE) tumor biopsy samples from 156 LARC patients (training cohort n = 60; validation cohort n = 96); we identified the nine-gene signature (FGFR3, GNA11, H3F3A, IL12A, IL1R1, IL2RB, NKD1, SGK2, and SPRY2) that distinctively differentiated responders from non-responders in the training cohort (accuracy = 86.9%, specificity = 84.8%, sensitivity = 81.5%) as well as in an independent validation cohort (accuracy = 81.0%, specificity = 79.4%, sensitivity = 82.3%). The signature was independent of all pathological and clinical features and was robust in predicting PCRT response. It is readily applicable to the clinical setting using FFPE samples and Food and Drug Administration (FDA) approved hardware and reagents. Predicting the response to PCRT may aid in tailored therapies for respective responders to PCRT and improve the oncologic outcomes for LARC patients.

4.
Genes (Basel) ; 10(2)2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813377

RESUMO

: (1) Motivation: The exponential increase in multilayered data, including omics, pathways, chemicals, and experimental models, requires innovative strategies to identify new linkages between drug response information and omics features. Despite the availability of databases such as the Cancer Cell Line Encyclopedia (CCLE), the Cancer Therapeutics Response Portal (CTRP), and The Cancer Genome Atlas (TCGA), it is still challenging for biologists to explore the relationship between drug response and underlying genomic features due to the heterogeneity of the data. In light of this, the Integrated Pharmacogenomic Database of Cancer Cell Lines and Tissues (IPCT) has been developed as a user-friendly way to identify new linkages between drug responses and genomic features, as these findings can lead not only to new biological discoveries but also to new clinical trials. (2) Results: The IPCT allows biologists to compare the genomic features of sensitive cell lines or small molecules with the genomic features of tumor tissues by integrating the CTRP and CCLE databases with the REACTOME, cBioPortal, and Expression Atlas databases. The input consists of a list of small molecules, cell lines, or genes, and the output is a graph containing data entities connected with the queried input. Users can apply filters to the databases, pathways, and genes as well as select computed sensitivity values and mutation frequency scores to generate a relevant graph. Different objects are differentiated based on the background color of the nodes. Moreover, when multiple small molecules, cell lines, or genes are input, users can see their shared connections to explore the data entities common between them. Finally, users can view the resulting graphs in the online interface or download them in multiple image or graph formats. (3) Availability and Implementation: The IPCT is available as a web application with an integrated MySQL database. The web application was developed using Java and deployed on the Tomcat server. The user interface was developed using HTML5, JQuery v.3.1.0 , and the Cytoscape Graph API v.1.0.4. The IPCT can be accessed at http://ipct.ewostech.net. The source code is available at https://github.com/muhammadshoaib/ipct.


Assuntos
Bases de Dados Genéticas , Neoplasias/genética , Variantes Farmacogenômicos , Software , Linhagem Celular Tumoral , Humanos
5.
BMC Med Genomics ; 11(1): 88, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285760

RESUMO

BACKGROUND: Bladder cancer has numerous genomic features that are potentially actionable by targeted agents. Nevertheless, both pre-clinical and clinical research using molecular targeted agents have been very limited in bladder cancer. RESULTS: We created the Genomics of Drug Sensitivity in Bladder Cancer (GDBC) database, an integrated database (DB) to facilitate the genomic understanding of bladder cancer in relation to drug sensitivity, in order to promote potential therapeutic applications of targeted agents in bladder cancer treatment. The GDBC database contains two separate datasets: 1) in-house drug sensitivity data, in which 13 targeted agents were tested against 10 bladder cancer cell lines; 2) data extracted and integrated from public databases, including the Cancer Therapeutics Research Portal, Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, Kyoto Encyclopedia of Genes and Genomes, and the Cancer Gene Census databases, as well as bladder cancer genomics data and synthetic lethality/synthetic dosage lethality connections. CONCLUSIONS: GDBC is an integrated DB of genomics and drug sensitivity data with a specific focus on bladder cancer. With a user-friendly web-interface, GDBC helps users generate genomics-based hypotheses that can be tested experimentally using drugs and cell lines included in GDBC.


Assuntos
Neoplasias da Bexiga Urinária/genética , Algoritmos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Bases de Dados Genéticas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Testes Farmacogenômicos/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Interface Usuário-Computador
6.
Oncotarget ; 7(42): 68638-68649, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27612425

RESUMO

Early-onset colorectal cancers (EOCRCs) may have biological or genomic features distinct from late-onset CRCs (LOCRCs). Previous studies have mostly focused on the germline predisposition conditions of EOCRCs, but we hypothesized that EOCRCs may have distinct somatic aberrations that accelerate cancer development. To identify the somatic aberrations that accelerate cancer development at an early age, we conducted whole exome sequencing for 28 polyposis-unrelated, microsatellite stable (MSS) EOCRCs with no known germline predisposition conditions. Surprisingly, we found two distinct groups in the context of mutational burden: 6 hypermutated cases with 2325 to 10973 mutations and 22 nonhypermutated cases with 47 to 154 mutations. Further analysis revealed that four of the six hypermutated cases had the same POLE P286R mutation. We validated this finding in 83 MSS EOCRCs and 27 MSS LOCRCs, which revealed that 7.2% of EOCRCs (6/83) had the POLE P286R mutation, which was not found in LOCRCs. Clinicopathologically, EOCRCs with POLE mutations occurred far more frequently in the right colon than in the left colon, affecting men more frequently than women. In summary, we have identified a unique subclass of colon cancer characterized by a hypermutation associated with the POLE mutation. The acquisition of the POLE mutation leading to hypermutation can accelerate cancer development. Clinically, this subset with hypermutation may be susceptible to immune checkpoint blockade.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , DNA Polimerase II/genética , Mutação de Sentido Incorreto , Proteínas de Ligação a Poli-ADP-Ribose/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , DNA Polimerase II/metabolismo , Exoma/genética , Feminino , Genômica/métodos , Humanos , Imunoterapia/métodos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Análise de Sequência de DNA/métodos
7.
Hepatology ; 60(6): 1972-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24798001

RESUMO

UNLABELLED: Hepatic resection is the most curative treatment option for early-stage hepatocellular carcinoma, but is associated with a high recurrence rate, which exceeds 50% at 5 years after surgery. Understanding the genetic basis of hepatocellular carcinoma at surgically curable stages may enable the identification of new molecular biomarkers that accurately identify patients in need of additional early therapeutic interventions. Whole exome sequencing and copy number analysis was performed on 231 hepatocellular carcinomas (72% with hepatitis B viral infection) that were classified as early-stage hepatocellular carcinomas, candidates for surgical resection. Recurrent mutations were validated by Sanger sequencing. Unsupervised genomic analyses identified an association between specific genetic aberrations and postoperative clinical outcomes. Recurrent somatic mutations were identified in nine genes, including TP53, CTNNB1, AXIN1, RPS6KA3, and RB1. Recurrent homozygous deletions in FAM123A, RB1, and CDKN2A, and high-copy amplifications in MYC, RSPO2, CCND1, and FGF19 were detected. Pathway analyses of these genes revealed aberrations in the p53, Wnt, PIK3/Ras, cell cycle, and chromatin remodeling pathways. RB1 mutations were significantly associated with cancer-specific and recurrence-free survival after resection (multivariate P = 0.038 and P = 0.012, respectively). FGF19 amplifications, known to activate Wnt signaling, were mutually exclusive with CTNNB1 and AXIN1 mutations, and significantly associated with cirrhosis (P = 0.017). CONCLUSION: RB1 mutations can be used as a prognostic molecular biomarker for resectable hepatocellular carcinoma. Further study is required to investigate the potential role of FGF19 amplification in driving hepatocarcinogenesis in patients with liver cirrhosis and to investigate the potential of anti-FGF19 treatment in these patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Fatores de Crescimento de Fibroblastos/genética , Neoplasias Hepáticas/genética , Proteína do Retinoblastoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirurgia , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Fator de Transcrição E2F1/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Proteína do Retinoblastoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA