Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 84(4): 1731-40, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939927

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) contains the major glycoprotein, GP5, as well as three other minor glycoproteins, namely, GP2a, GP3, and GP4, on the virion envelope, all of which are required for generation of infectious virions. To study their interactions with each other and with the cellular receptor for PRRSV, we have cloned each of the viral glycoproteins and CD163 receptor in expression vectors and examined their expression and interaction with each other in transfected cells by coimmunoprecipitation (co-IP) assay using monospecific antibodies. Our results show that a strong interaction exists between the GP4 and GP5 proteins, although weak interactions among the other minor envelope glycoproteins and GP5 have been detected. Both GP2a and GP4 proteins were found to interact with all the other GPs, resulting in the formation of multiprotein complex. Our results further show that the GP2a and GP4 proteins also specifically interact with the CD163 molecule. The carboxy-terminal 223 residues of the CD163 molecule are not required for interactions with either the GP2a or the GP4 protein, although these residues are required for conferring susceptibility to PRRSV infection in BHK-21 cells. Overall, we conclude that the GP4 protein is critical for mediating interglycoprotein interactions and, along with GP2a, serves as the viral attachment protein that is responsible for mediating interactions with CD163 for virus entry into susceptible host cell.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Receptores de Superfície Celular/metabolismo , Proteínas do Envelope Viral/fisiologia , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/química , Antígenos de Diferenciação Mielomonocítica/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Cricetinae , Primers do DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sus scrofa , Suínos , Transfecção , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
2.
J Virol ; 80(8): 3994-4004, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16571816

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 5 (GP5) is the most abundant envelope glycoprotein and a major inducer of neutralizing antibodies in vivo. Three putative N-linked glycosylation sites (N34, N44, and N51) are located on the GP5 ectodomain, where a major neutralization epitope also exists. To determine which of these putative sites are used for glycosylation and the role of the glycan moieties in the neutralizing antibody response, we generated a panel of GP5 mutants containing amino acid substitutions at these sites. Biochemical studies with expressed wild-type (wt) and mutant proteins revealed that the mature GP5 contains high-mannose-type sugar moieties at all three sites. These mutations were subsequently incorporated into a full-length cDNA clone. Our data demonstrate that mutations involving residue N44 did not result in infectious progeny production, indicating that N44 is the most critical amino acid residue for infectivity. Viruses carrying mutations at N34, N51, and N34/51 grew to lower titers than the wt PRRSV. In serum neutralization assays, the mutant viruses exhibited enhanced sensitivity to neutralization by wt PRRSV-specific antibodies. Furthermore, inoculation of pigs with the mutant viruses induced significantly higher levels of neutralizing antibodies against the mutant as well as the wt PRRSV, suggesting that the loss of glycan residues in the ectodomain of GP5 enhances both the sensitivity of these viruses to in vitro neutralization and the immunogenicity of the nearby neutralization epitope. These results should have great significance for development of PRRSV vaccines of enhanced protective efficacy.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Cricetinae , Epitopos , Glicosilação , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/farmacologia , Mutação , Suínos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
3.
J Virol ; 80(1): 149-60, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16352539

RESUMO

We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 +/- 0.01 microM. Comparable reduction of viral RNA synthesis (EC50 = 0.12 +/- 0.02 microM) and production of infectious virus (EC50= 0.074 +/- 0.003 microM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was approximately 2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed.


Assuntos
Antivirais/farmacologia , Pestivirus/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus da Diarreia Viral Bovina Tipo 1/efeitos dos fármacos , Farmacorresistência Viral , Imidazóis/farmacologia , Dose Letal Mediana , Mutação , Pestivirus/fisiologia , Piridinas/farmacologia , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Triazinas/química , Células Tumorais Cultivadas
4.
J Virol ; 80(2): 900-11, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16378992

RESUMO

The alpha/beta interferon (IFN-alpha/beta) system is the first line of defense against viral infection and a critical link between the innate and adaptive immune responses. IFN-alpha/beta secretion is the hallmark of cellular responses to acute RNA virus infections. As part of their survival strategy, many viruses have evolved mechanisms to counteract the host IFN-alpha/beta response. Bovine viral diarrhea virus (BVDV) (genus Pestivirus) was reported to trigger interferon production in infected cultured cells under certain circumstances or to suppress it under others. Our studies with various cultured fibroblasts and epithelial bovine cells indicated that cytopathic (cp) BVDV induces IFN-alpha/beta very inefficiently. Using a set of engineered cp BVDVs expressing mutant Npro and appropriate controls, we found that the IFN-alpha/beta response to infection was dependent on Npro expression and independent of viral replication efficiency. In order to investigate whether the protease activity of Npro is required for IFN-alpha/beta antagonism, we engineered Npro mutants lacking protease activity by replacement of amino acid E22, H49, or C69. We found that E22 and H49 substitutions abolished the ability of Npro to suppress IFN, whereas C69 had no effect, suggesting that the structural integrity of the N terminus of Npro was more important than its catalytic activity for IFN-alpha/beta suppression. A catalytically active mutant with a change at a conserved Npro region near the N terminus (L8P) in both BVDV biotypes did not antagonize IFN-alpha/beta production, confirming its involvement in this process. Taken together, these results not only provide direct evidence for the role of Npro in blocking IFN-alpha/beta induction, but also implicate the amino-terminal domain of the protein in this function.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/metabolismo , Vírus da Diarreia Viral Bovina/fisiologia , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Proteínas Virais/fisiologia , Aminoácidos/genética , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Células Cultivadas , Vírus da Diarreia Viral Bovina/genética , Regulação para Baixo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Interferon-alfa/antagonistas & inibidores , Interferon beta/antagonistas & inibidores , Mutação , Proteínas Virais/genética
5.
J Virol ; 78(18): 9612-23, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15331694

RESUMO

A novel mutant of bovine viral diarrhea virus (BVDV) was found with a virion assembly phenotype attributable to an insertion into the NS5B polymerase locus. This mutant, termed 5B-741, was engineered by reverse genetics to express NS5B with a C-terminal peptide tag of 22 amino acids. Electroporation of bovine cells with genomic RNA from this mutant showed levels RNA synthesis which were regarded as sufficient for infectivity, yet infectious virions were not produced. Pseudorevertants of mutant 5B-741 that released infectious virions and formed plaques revealed a single nucleotide change (T12369C). This change resulted in a leucine-to-proline substitution within the NS5B tag (L726P). Genetic analysis revealed that indeed a single nucleotide change encoding proline at NS5B position 726 in the pseudorevertant polyprotein mediated recovery of virion assembly function without improving genomic RNA accumulation levels. A subgenomic BVDV reporter replicon (rNS3-5B) was used to analyze the consequences of alterations of the genomic region encoding the NS5B C terminus on replication and assembly. Interestingly, rNS3-5B-L726P (revertant) replicated with the same efficiency as the rNS3-5B-741 mutant but produced 10 times more virions in a trans-packaging assay. These results indicated that impairment of assembly function in 5B-741 was independent of RNA accumulation levels and agreed with the observations from the full-length mutant and revertant genomes. Finally, we recapitulated the packaging defect of 5B-741 with a vaccinia virus expression system to eliminate possible unwanted interactions between the helper virus and the packaged replicon. Taken together, these studies revealed an unexpected role of NS5B in infectious virion assembly.


Assuntos
Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Linhagem Celular , Cricetinae , DNA Viral/genética , Vírus da Diarreia Viral Bovina/patogenicidade , Genoma Viral , Humanos , Dados de Sequência Molecular , Mutagênese Insercional , RNA Viral/biossíntese , RNA Viral/genética , Recombinação Genética , Replicon , Vaccinia virus/genética , Vaccinia virus/fisiologia , Virulência/genética , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral
6.
J Gen Virol ; 84(Pt 5): 1269-1274, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692293

RESUMO

Bovine viral diarrhoea virus (BVDV) isolates infect cultured Madin-Darby bovine kidney (MDBK) cells as efficiently as sheep kidney cells. In contrast, border disease virus (BDV) propagates poorly in MDBK cells but infects sheep cells very efficiently. The envelope glycoprotein E2 has been shown to be essential for virus infectivity. To explore the potential role of E2 in pestivirus host range in cell cultures, we engineered a chimeric BVDV with the E2 coding region from BDV. As expected, the BVDV-E2(bdv) chimera retained the ability of BDV to multiply in sheep cells but experienced a remarkable reduction in its ability to propagate and form plaques in MDBK, a phenotype that is characteristic of the E2 donor, BDV31 virus. Control chimeric BVDV bearing a type II E2 demonstrated that the heterologous E2 does not impair replication in MDBK or lamb cells. These results establish a role for E2 in determining the tropism of a pestivirus in cell culture.


Assuntos
Vírus da Doença da Fronteira/patogenicidade , Vírus da Diarreia Viral Bovina/patogenicidade , Glicoproteínas/metabolismo , Ruminantes/virologia , Proteínas do Envelope Viral/metabolismo , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular , Glicoproteínas/química , Glicoproteínas/genética , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ovinos , Especificidade da Espécie , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Ensaio de Placa Viral , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA