Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1282536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125949

RESUMO

Elastography Ultrasound provides elasticity information of the tissues, which is crucial for understanding the density and texture, allowing for the diagnosis of different medical conditions such as fibrosis and cancer. In the current medical imaging scenario, elastograms for B-mode Ultrasound are restricted to well-equipped hospitals, making the modality unavailable for pocket ultrasound. To highlight the recent progress in elastogram synthesis, this article performs a critical review of generative adversarial network (GAN) methodology for elastogram generation from B-mode Ultrasound images. Along with a brief overview of cutting-edge medical image synthesis, the article highlights the contribution of the GAN framework in light of its impact and thoroughly analyzes the results to validate whether the existing challenges have been effectively addressed. Specifically, This article highlights that GANs can successfully generate accurate elastograms for deep-seated breast tumors (without having artifacts) and improve diagnostic effectiveness for pocket US. Furthermore, the results of the GAN framework are thoroughly analyzed by considering the quantitative metrics, visual evaluations, and cancer diagnostic accuracy. Finally, essential unaddressed challenges that lie at the intersection of elastography and GANs are presented, and a few future directions are shared for the elastogram synthesis research.

2.
Cancer Med ; 12(13): 14225-14251, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191030

RESUMO

BACKGROUND: Percutaneous thermal ablation has become the preferred therapeutic treatment option for liver cancers that cannot be resected. Since ablative zone tissue changes over time, it becomes challenging to determine therapy effectiveness over an extended period. Thus, an immediate post-procedural evaluation of the ablation zone is crucial, as it could influence the need for a second-look treatment or follow-up plan. Assessing treatment response immediately after ablation is essential to attain favorable outcomes. This study examines the efficacy of image fusion strategies immediately post-ablation in liver neoplasms to determine therapeutic response. METHODOLOGY: A comprehensive systematic search using PRISMA methodology was conducted using EMBASE, MEDLINE (via PUBMED), and Cochrane Library Central Registry electronic databases to identify articles that assessed the immediate post-ablation response in malignant hepatic tumors with fusion imaging (FI) systems. The data were retrieved on relevant clinical characteristics, including population demographics, pre-intervention clinical history, lesion characteristics, and intervention type. For the outcome metrics, variables such as average fusion time, intervention metrics, technical success rate, ablative safety margin, supplementary ablation rate, technical efficacy rate, LTP rates, and reported complications were extracted. RESULTS: Twenty-two studies were included for review after fulfilling the study eligibility criteria. FI's immediate technical success rate ranged from 81.3% to 100% in 17/22 studies. In 16/22 studies, the ablative safety margin was assessed immediately after ablation. Supplementary ablation was performed in 9 studies following immediate evaluation by FI. In 15/22 studies, the technical effectiveness rates during the first follow-up varied from 89.3% to 100%. CONCLUSION: Based on the studies included, we found that FI can accurately determine the immediate therapeutic response in liver cancer ablation image fusion and could be a feasible intraprocedural tool for determining short-term post-ablation outcomes in unresectable liver neoplasms. There are some technical challenges that limit the widespread adoption of FI techniques. Large-scale randomized trials are warranted to improve on existing protocols. Future research should emphasize improving FI's technological capabilities and clinical applicability to a broader range of tumor types and ablation procedures.


Assuntos
Técnicas de Ablação , Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/cirurgia , Técnicas de Ablação/efeitos adversos , Técnicas de Ablação/métodos , Tomografia Computadorizada por Raios X/métodos , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos
3.
Comput Biol Med ; 153: 106478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603437

RESUMO

Liver Ultrasound (US) or sonography is popularly used because of its real-time output, low-cost, ease-of-use, portability, and non-invasive nature. Segmentation of real-time liver US is essential for diagnosing and analyzing liver conditions (e.g., hepatocellular carcinoma (HCC)), assisting the surgeons/radiologists in therapeutic procedures. In this paper, we propose a method using a modified Pyramid Scene Parsing (PSP) module in tuned neural network backbones to achieve real-time segmentation without compromising the segmentation accuracy. Considering widespread noise in US data and its impact on outcomes, we study the impact of pre-processing and the influence of loss functions on segmentation performance. We have tested our method after annotating a publicly available US dataset containing 2400 images of 8 healthy volunteers (link to the annotated dataset is provided); the results show that the Dense-PSP-UNet model achieves a high Dice coefficient of 0.913±0.024 while delivering a real-time performance of 37 frames per second (FPS).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Ultrassonografia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
4.
Sci Rep ; 12(1): 14153, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986015

RESUMO

Segmentation of abdominal Computed Tomography (CT) scan is essential for analyzing, diagnosing, and treating visceral organ diseases (e.g., hepatocellular carcinoma). This paper proposes a novel neural network (Res-PAC-UNet) that employs a fixed-width residual UNet backbone and Pyramid Atrous Convolutions, providing a low disk utilization method for precise liver CT segmentation. The proposed network is trained on medical segmentation decathlon dataset using a modified surface loss function. Additionally, we evaluate its quantitative and qualitative performance; the Res16-PAC-UNet achieves a Dice coefficient of 0.950 ± 0.019 with less than half a million parameters. Alternatively, the Res32-PAC-UNet obtains a Dice coefficient of 0.958 ± 0.015 with an acceptable parameter count of approximately 1.2 million.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos
5.
BMC Med Imaging ; 22(1): 97, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610600

RESUMO

Clinical imaging (e.g., magnetic resonance imaging and computed tomography) is a crucial adjunct for clinicians, aiding in the diagnosis of diseases and planning of appropriate interventions. This is especially true in malignant conditions such as hepatocellular carcinoma (HCC), where image segmentation (such as accurate delineation of liver and tumor) is the preliminary step taken by the clinicians to optimize diagnosis, staging, and treatment planning and intervention (e.g., transplantation, surgical resection, radiotherapy, PVE, embolization, etc). Thus, segmentation methods could potentially impact the diagnosis and treatment outcomes. This paper comprehensively reviews the literature (during the year 2012-2021) for relevant segmentation methods and proposes a broad categorization based on their clinical utility (i.e., surgical and radiological interventions) in HCC. The categorization is based on the parameters such as precision, accuracy, and automation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA