Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 128(2): 1664-1674, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575239

RESUMO

Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.


Assuntos
Antifúngicos , Aspergillus nidulans , Álcool Feniletílico/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Transcriptoma , Glutationa/genética , Glutationa/metabolismo , Glutationa/farmacologia , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
J Fungi (Basel) ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535229

RESUMO

Pathogens have to cope with oxidative, iron- and carbon(glucose)-limitation stresses in the human body. To understand how combined iron-carbon limitation alters oxidative stress responses, Aspergillus fumigatus was cultured in glucose-peptone or peptone containing media supplemented or not with deferiprone as an iron chelator. Changes in the transcriptome in these cultures were recorded after H2O2 treatment. Responses to oxidative stress were highly dependent on the availability of glucose and iron. Out of the 16 stress responsive antioxidative enzyme genes, only the cat2 catalase-peroxidase gene was upregulated in more than two culturing conditions. The transcriptional responses observed in iron metabolism also varied substantially in these cultures. Only extracellular siderophore production appeared important regardless of culturing conditions in oxidative stress protection, while the enhanced synthesis of Fe-S cluster proteins seemed to be crucial for oxidative stress treated iron-limited and fast growing (glucose rich) cultures. Although pathogens and host cells live together in the same place, their culturing conditions (e.g., iron availability or occurrence of oxidative stress) can be different. Therefore, inhibition of a universally important biochemical process, like Fe-S cluster assembly, may selectively inhibit the pathogen growth in vivo and represent a potential target for antifungal therapy.

3.
Microorganisms ; 9(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361869

RESUMO

Cadmium is an exceptionally toxic industrial and environmental pollutant classified as a human carcinogen. In order to provide insight into how we can keep our environment safe from cadmium contamination and prevent the accumulation of it in the food chain, we aim to elucidate how Aspergillus nidulans, one of the most abundant fungi in soil, survives and handles cadmium stress. As AtfA is the main transcription factor governing stress responses in A. nidulans, we examined genome-wide expression responses of wild-type and the atfA null mutant exposed to CdCl2. Both strains showed up-regulation of the crpA Cu2+/Cd2+ pump gene and AN7729 predicted to encode a putative bis(glutathionato)-cadmium transporter, and transcriptional changes associated with elevated intracellular Cys availability leading to the efficient adaptation to Cd2+. Although the deletion of atfA did not alter the cadmium tolerance of the fungus, the cadmium stress response of the mutant differed from that of a reference strain. Promoter and transcriptional analyses of the "Phospho-relay response regulator" genes suggest that the AtfA-dependent regulation of these genes can be relevant in this phenomenon. We concluded that the regulatory network of A. nidulans has a high flexibility allowing the fungus to adapt efficiently to stress both in the presence and absence of this important transcription factor.

4.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33637571

RESUMO

Glutathione (GSH) is an abundant tripeptide that plays a crucial role in shielding cellular macromolecules from various reactive oxygen and nitrogen species in fungi. Understanding GSH metabolism is of vital importance for deciphering redox regulation in these microorganisms. In the present study, to better understand the GSH metabolism in filamentous fungi, we investigated functions of the dugB and dugC genes in the model fungus Aspergillus nidulans These genes are orthologues of dug2 and dug3, which are involved in cytosolic GSH degradation in Saccharomyces cerevisiae The deletion of dugB, dugC, or both resulted in a moderate increase in the GSH content in mycelia grown on glucose, reduced conidium production, and disturbed sexual development. In agreement with these observations, transcriptome data showed that genes encoding mitogen-activated protein (MAP) kinase pathway elements (e.g., steC, sskB, hogA, and mkkA) or regulatory proteins of conidiogenesis and sexual differentiation (e.g., flbA, flbC, flbE, nosA, rosA, nsdC, and nsdD) were downregulated in the ΔdugB ΔdugC mutant. Deletion of dugB and/or dugC slowed the depletion of GSH pools during carbon starvation. It also reduced accumulation of reactive oxygen species and decreased autolytic cell wall degradation and enzyme secretion but increased sterigmatocystin formation. Transcriptome data demonstrated that enzyme secretions-in contrast to mycotoxin production-were controlled at the posttranscriptional level. We suggest that GSH connects starvation and redox regulation to each other: cells utilize GSH as a stored carbon source during starvation. The reduction of GSH content alters the redox state, activating regulatory pathways responsible for carbon starvation stress responses.IMPORTANCE Glutathione (GSH) is a widely distributed tripeptide in both eukaryotes and prokaryotes. Owing to its very low redox potential, antioxidative character, and high intracellular concentration, GSH profoundly shapes the redox status of cells. Our observations suggest that GSH metabolism and/or the redox status of cells plays a determinative role in several important aspects of fungal life, including oxidative stress defense, protein secretion, and secondary metabolite production (including mycotoxin formation), as well as sexual and asexual differentiations. We demonstrated that even a slightly elevated GSH level can substantially disturb the homeostasis of fungi. This information could be important for development of new GSH-producing strains or for any biotechnologically relevant processes where the GSH content, antioxidant capacity, or oxidative stress tolerance of a fungal strain is manipulated.


Assuntos
Aspergillus nidulans/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Peptídeo Hidrolases/metabolismo , Aspergillus nidulans/genética , Carbono-Nitrogênio Ligases/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Peptídeo Hidrolases/genética , Transcriptoma
5.
BMC Genomics ; 19(1): 357, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747589

RESUMO

BACKGROUND: Aspergillus fumigatus has to cope with a combination of several stress types while colonizing the human body. A functional interplay between these different stress responses can increase the chances of survival for this opportunistic human pathogen during the invasion of its host. In this study, we shed light on how the H2O2-induced oxidative stress response depends on the iron available to this filamentous fungus, using transcriptomic analysis, proteomic profiles, and growth assays. RESULTS: The applied H2O2 treatment, which induced only a negligible stress response in iron-replete cultures, deleteriously affected the fungus under iron deprivation. The majority of stress-induced changes in gene and protein expression was not predictable from data coming from individual stress exposure and was only characteristic for the combination of oxidative stress plus iron deprivation. Our experimental data suggest that the physiological effects of combined stresses and the survival of the fungus highly depend on fragile balances between economization of iron and production of essential iron-containing proteins. One observed strategy was the overproduction of iron-independent antioxidant proteins to combat oxidative stress during iron deprivation, e.g. the upregulation of superoxide dismutase Sod1, the thioredoxin reductase Trr1, and the thioredoxin orthologue Afu5g11320. On the other hand, oxidative stress induction overruled iron deprivation-mediated repression of several genes. In agreement with the gene expression data, growth studies underlined that in A. fumigatus iron deprivation aggravates oxidative stress susceptibility. CONCLUSIONS: Our data demonstrate that studying stress responses under separate single stress conditions is not sufficient to understand how A. fumigatus adapts in a complex and hostile habitat like the human body. The combinatorial stress of iron depletion and hydrogen peroxide caused clear non-additive effects upon the stress response of A. fumigatus. Our data further supported the view that the ability of A. fumigatus to cause diseases in humans strongly depends on its fitness attributes and less on specific virulence factors. In summary, A. fumigatus is able to mount and coordinate complex and efficient responses to combined stresses like iron deprivation plus H2O2-induced oxidative stress, which are exploited by immune cells to kill fungal pathogens.


Assuntos
Aspergillus fumigatus/metabolismo , Peróxido de Hidrogênio/farmacologia , Ferro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Cromatografia Líquida , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Transcriptoma
6.
Cell Calcium ; 50(4): 381-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21820173

RESUMO

Primary lens epithelial cell (LEC) cultures derived from newborn (P0) and one-month-old (P30) mouse lenses were used to study GABA (gamma-aminobutyric acid) signaling expression and its effect on the intracellular Ca2+ ([Ca2+]i) level. We have found that these cultures express specific cellular markers for lens epithelial and fiber cells, all components of the functional GABA signaling pathway and GABA, thus recapitulating the developmental program of the ocular lens. Activation of both GABA-A and GABA-B receptors (GABAAR and GABABR) with the specific agonists muscimol and baclofen, respectively induces [Ca2+]i transients that could be blocked by the specific antagonists bicuculline and CGP55845 and were dependent on extracellular Ca2+. Bicuculline did not change the GABA-evoked Ca2+ responses in Ca2-containing buffers, but suppressed them significantly in Ca2+-free buffers suggesting the two receptors couple to convergent Ca2+ mobilization mechanisms with different extracellular Ca2+ sensitivity. Prolonged activation of GABABR induced wave propagation of the Ca2+ signal and persistent oscillations. The number of cells reacting to GABA or GABA+bicuculline in P30 mouse LEC cultures expressing predominantly the synaptic type GABAAR did not differ significantly from the number of reacting cells in P0 mouse LEC cultures. The GABA-induced Ca2+ transients in P30 (but not P0) mouse LEC could be entirely suppressed by co-application of bicuculline and CGP55845. The GABA-mediated Ca2+ signaling may be involved in a variety of Ca2+-dependent cellular processes during lens growth and epithelial cell differentiation.


Assuntos
Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Células Epiteliais/metabolismo , Cristalino/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Baclofeno/farmacologia , Bicuculina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Cristalino/citologia , Cristalino/crescimento & desenvolvimento , Camundongos , Muscimol/farmacologia , Cultura Primária de Células
7.
Neurosci Lett ; 381(3): 344-9, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15896497

RESUMO

To specify targets for an ischemic preconditioning paradigm (ischemic tolerance), c-fos expressions in ischemic (induced by 10 min bilateral carotid-occlusions subsequent to coagulation of vertebral arteries) and preconditioned rats (treated for 4 min carotid-occlusions 72 h before ischemia) were compared in 12 forebrain areas/nuclei. Fos immunostaining was applied to serial sections of the forebrain and the density (cell number/area measured) of Fos-immunopositive (Fos+) neurons, as well as their percentile changes were determined in five hippocampal and seven extrahippocampal areas/nuclei of ischemic and preconditioned rats. The ratio of counts found in ischemic over control animals showed several fold increase of Fos+ cells in the three layers (granule cell, molecular and polymorphic) of the dentate gyrus, CA3 and CA1 pyramidal neurons, as well as in thalamic and hypothalamic nuclei and limbic cortical areas. In contrast, preconditioning did not alter c-fos expressions significantly in the extrahippocampal brain areas investigated. These results strengthen the hypothesis that the hippocampal and dentate neurons are more susceptible to ischemic tolerance than cells in other brain regions. In fact stress-response and induction of ischemic tolerance in different forebrain areas can be distinguished.


Assuntos
Isquemia Encefálica/patologia , Hipocampo/irrigação sanguínea , Neurônios/metabolismo , Prosencéfalo/irrigação sanguínea , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Isquemia Encefálica/metabolismo , Contagem de Células , Hipocampo/metabolismo , Imuno-Histoquímica , Precondicionamento Isquêmico , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA