Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(17): 5459-5477, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906994

RESUMO

In the present work, the approaches of submerged co-cultivation and microparticle-enhanced cultivation (MPEC) were combined and evaluated over the course of three case studies. The filamentous fungus Aspergillus terreus was co-cultivated with Penicillium rubens, Streptomyces rimosus, or Cerrena unicolor in shake flasks with or without the addition of aluminum oxide microparticles. The influence of microparticles on the production of lovastatin, penicillin G, oxytetracycline, and laccase in co-cultures was compared with the effects recorded for the corresponding monocultures. In addition, the quantitative analyses of morphological parameters, sugars consumption, and by-products formation were performed. The study demonstrated that the influence of microparticles on the production of a given molecule in mono- and co-culture may differ considerably, e.g., the biosynthesis of oxytetracycline was shown to be inhibited due to the presence of aluminum oxide in "A. terreus vs. S. rimosus" co-cultivation variants but not in S. rimosus monocultures. The differences were also observed regarding the morphological characteristics, e.g., the microparticles-induced changes of projected area in the co-cultures and the corresponding monocultures were not always comparable. In addition, the study showed the importance of medium composition on the outcomes of MPEC, as exemplified by lovastatin production in A. terreus monocultures. Finally, the co-cultures of A. terreus with a white-rot fungus C. unicolor were described here for the first time. KEY POINTS: • Aluminum oxide affects secondary metabolites production in submerged co-cultures. • Mono- and co-cultures are differently impacted by the addition of aluminum oxide. • Effect of aluminum oxide on metabolites production depends on medium composition.


Assuntos
Basidiomycota , Oxitetraciclina , Óxido de Alumínio , Técnicas de Cocultura , Lovastatina
2.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287209

RESUMO

One of the directions of development in the textiles industry is the search for new technologies for producing modern multifunctional products. New solutions are sought to obtain materials that will protect humans against the harmful effects of the environment, including such factors as the activity of microorganisms and UV radiation. Products made of natural cellulose fibers are often used. In the case of this type of material, it is very important to perform appropriate pretreatment before subsequent technological processes. This treatment has the aim of removing impurities from the surface of the fibers, which results in the improvement of sorption properties and adhesion, leading directly to the better penetration of dyes and chemical modifiers into the structure of the materials. In this work, linen fabrics were subjected to a new, innovative treatment being a combination of bio-pretreatment using laccase from Cerrena unicolor and modification with CuO-SiO2 hybrid oxide microparticles by a dip-coating method. To compare the effect of alkaline or enzymatic pretreatment on the microstructure of the linen woven fabrics, SEM analysis was performed. The new textile products obtained after this combined process exhibit very good antimicrobial activity against Candida albicans, significant antibacterial activity against the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus, as well as very good UV protection properties (ultraviolet protection factor (UPF) > 40). These innovative materials can be used especially for clothing or outdoor textiles for which resistance to microorganisms is required, as well as to protect people who are exposed to long-term, harmful effects of UV radiation.


Assuntos
Antiácidos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Roupas de Cama, Mesa e Banho , Corantes/química , Polyporales/química , Dióxido de Silício/química , Têxteis , Raios Ultravioleta
3.
Bioprocess Biosyst Eng ; 42(10): 1635-1645, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31203448

RESUMO

Laccases have received the attention of researchers in the last few decades due to their ability to degrade phenolic and lignin-related compounds. This study aimed at obtaining the highest possible laccase activity and evaluating the methods of its purification. The crude laccase from bioreactor cultivation of Cerrena unicolor fungus was purified using ultrafiltration, aqueous two-phase extraction (ATPE) and foam fractionation (FF), which allowed for the assessment of these three downstream processing (DSP) methods. The repeated fed-batch cultivation mode applied for the enzyme production resulted in a high laccase specific activity in fermentation broth of 204.1 U/mg. The use of a specially constructed spin filter inside the bioreactor enabled the integration of enzyme biosynthesis and biomass filtration in one apparatus. Other methods of laccase concentration and purification, namely ATPE and FF, proved to be useful for laccase separation; however, the efficiency of FF was rather low (recovery yield of 24.9% and purification fold of 1.4). Surprisingly, the recovery yield after ATPE in a PEG 6000-phosphate system in salt phase was higher (97.4%) than after two-step ultrafiltration (73.7%). Furthermore, it was demonstrated that a simple, two-step purification procedure resulted in separation of two laccase isoforms with specific activity of 2349 and 3374 U/mg. All in all, a compact integrated system for the production, concentration and separation of fungal laccases was proposed.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Lacase/química , Lacase/isolamento & purificação , Polyporales/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA