Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(9): 478, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948813

RESUMO

Melanoma is the most aggressive among all types of skin cancers. The current strategies against melanoma utilize BRAFV600E, as a focal point for targeted therapy. However, therapy resistance developed in melanoma patients against the conventional anti-melanoma drugs hinders the ultimate benefits of targeted therapies. A major mechanism by which melanoma cells attain therapy resistance is via the activation of microphthalmia-associated transcription factor-M (MITF-M), the key transcription factor and oncogene aiding the survival of melanoma cells. We demonstrate that tryptanthrin (Tpn), an indole quinazoline alkaloid, which we isolated and characterized from Wrightia tinctoria, exhibits remarkable anti-tumor activity towards human melanoma through the down-regulation of MITF-M. Microarray analysis of Tpn-treated melanoma cells followed by a STRING protein association network analysis revealed that differential expression of genes in melanoma converges at MITF-M. Furthermore, in vitro and in vivo studies conducted using melanoma cells with differential MITF-M expression status, endogenously or ectopically, demonstrated that the anti-melanoma activity of Tpn is decisively contingent on its efficacy in down-regulating MITF-M expression. Tpn potentiates the degradation of MITF-M via the modulation of MEK1/2-ERK1/2-MITF-M signaling cascades. Murine models demonstrate the efficacy of Tpn in attenuating the migration and metastasis of melanoma cells, while remaining pharmacologically safe. In addition, Tpn suppresses the expression of mutated BRAFV600E and inhibits Casein Kinase 2α, a pro-survival enzyme that regulates ERK1/2 homeostasis in many tumor types, including melanoma. Together, we point to a promising anti-melanoma drug in Tpn, by virtue of its attributes to impede melanoma invasion and metastasis by attenuating MITF-M.


Assuntos
Melanoma , Fator de Transcrição Associado à Microftalmia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Quinazolinas
3.
Cancer Prev Res (Phila) ; 12(4): 225-236, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760502

RESUMO

The rate of lung cancer incidence is alarmingly mounting, despite the decline of smoking and tobacco consumption. Recent reports indicate a very high correlation between the growing fast food culture and lung cancer incidence. Benzo[a]pyrene (B[a]P) is a potent carcinogen abundantly present in grilled and deep-fried food and in tobacco smoke. Our previous studies have proved the efficacy of curcumin in curbing B[a]P-induced lung carcinogenesis. However, the poor pharmacokinetic profile of the compound considerably hampers its potential as an effective chemopreventive. This study was intended to evaluate whether encapsulation of curcumin in chitosan nanoparticles can improve the cellular uptake and prolong the tissue retention of curcumin yielding better chemoprevention. The curcumin-loaded chitosan nanoparticles (chitosan nanocurcumin) exhibited a size of 170-200 nm in transmission electron microscopy. In vitro drug release studies showed sustained release of curcumin over a period of approximately 180 hours and excellent intracellular uptake and cytotoxicity in lung cancer cells. Bioavailability studies using healthy Swiss albino mice demonstrated drastic enhancement in lung localization of chitosan nanocurcumin compared with free curcumin. Toxicologic evaluation using chronic toxicity model in Swiss albino mice confirmed the pharmacologic safety of the formulation. Moreover, the formulation, even at a dose equivalent to one fourth that of free curcumin, exhibits better efficacy in reducing tumor incidence and multiplicity than free curcumin, thereby hampering development of B[a]P-induced lung adenocarcinomas in Swiss albino mice. Hence, our study underscores the supremacy of the formulation over free curcumin and establishes it as a potential chemopreventive and oral supplement against environmental carcinogenesis.


Assuntos
Antineoplásicos/farmacologia , Benzo(a)pireno/toxicidade , Quitosana/química , Curcumina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antineoplásicos/química , Disponibilidade Biológica , Curcumina/química , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Nanopartículas/química
4.
Sci Rep ; 6: 36318, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808117

RESUMO

We report, for the first time, the remarkable efficacy of uttroside B, a potent saponin from Solanum nigrum Linn, against liver cancer. The compound has been isolated and characterized from the leaves of Solanum nigrum Linn, a plant widely used in traditional medicine and is a rich resource of several anticancer molecules. Uttroside B, that comprises of ß-D-glucopyranosyl unit at C-26 of the furostanol and ß-lycotetraosyl unit at C-3, is ten times more cytotoxic to the liver cancer cell line, HepG2 (IC50: 0.5 µM) than sorafenib (IC50: 5.8 µM), the only FDA-approved drug for liver cancer. Moreover, it induces cytotoxicity in all liver cancer cell lines, irrespective of their HBV status, while being non-toxic to normal immortalized hepatocytes. It induces apoptosis in HepG2 cells by down-regulating mainly the activation of MAPK and mTOR pathways. The drastic reduction in HepG2-xenograft tumor size achieved by uttroside B in NOD-SCID mice and substantiation of its biological safety through both acute and chronic toxicity studies in Swiss albino mice warrants clinical validation of the molecule against hepatic cancer, for which, the chemotherapeutic armamentarium currently has limited weapons.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Saponinas/administração & dosagem , Solanum nigrum/química , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Saponinas/química , Saponinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biofactors ; 41(6): 431-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26643788

RESUMO

Benzo[a]pyrene is a procarcinogen present in environment and cigarette smoke, which could be bio-transformed in vivo to B[a]PDE, a potent carcinogen known to form DNA adducts and induce mutations. We observed that curcumin, a known chemopreventive, could significantly inhibit the survival of lung cancer cells exposed to B[a]PDE. It also downregulates B[a]PDE-induced nuclear translocation of NF-κB as assessed by Electrophoretic Mobility Shift Assay (EMSA) and NF-κB-dependent reporter gene assay. Ames assay demonstrated its ability to revert the mutagenic property of benzo[a]pyrene. These observations prompted us to evaluate the efficacy of curcumin in preventing B[a]P-induced lung carcinogenesis in vivo and to explore the molecular mechanism associated with it. The average number of tumor nodules present in the lungs of the Swiss albino mice, which received benzo[a]pyrene, was significantly high compared to that received curcumin as 2% diet along with B[a]P. Curcumin treatment significantly reverted histopathological deviations in the lung tissues due to benzo[a]pyrene ingestion. Moreover, curcumin diet reduced benzo[a]pyrene-induced activation of NF-κB and MAPK signaling and Cox-2 transcription in lung tissues of mice. Taken together, this study illustrates multifaceted efficacy of curcumin in preventing lung cancer.


Assuntos
Carcinogênese/genética , Curcumina/administração & dosagem , Neoplasias Pulmonares/dietoterapia , Neoplasias Pulmonares/genética , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Animais , Benzo(a)pireno/toxicidade , Biotransformação , Carcinogênese/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênese/genética , NF-kappa B/genética
7.
Enzymes ; 37: 43-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26298455

RESUMO

The idea and practice of developing or identifying compounds capable of eliminating the transformed cells or cancer cells without being nontoxic to their normal counterparts deserves much importance. Since ages, plants have been considered and proven to be repertoires of chemicals possessing immense therapeutic potential. A proportion of these plant-derived compounds or phytochemicals were shown to be highly competent anticancer agents besides being effective against many other diseases. Representative compounds of different classes of phytochemicals are in clinical use against cancer. In this chapter, we discuss the anticancer potential of two compounds: quercetin, a flavonoid and tryptanthrin, an indoloquinazoline alkaloid, and the mechanisms behind their cytotoxic effects on cancers of different origin. The chapter also gives a brief mention of their properties that make them effective against cancer.

8.
Sci Rep ; 5: 11107, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26061820

RESUMO

Wrightia tinctoria is a constituent of several ayurvedic preparations against skin disorders including psoriasis and herpes, though not yet has been explored for anticancer potential. Herein, for the first time, we report the significant anticancer properties of a semi-purified fraction, DW-F5, from the dichloromethane extract of W. tinctoria leaves against malignant melanoma. DW-F5 exhibited anti-melanoma activities, preventing metastasis and angiogenesis in NOD-SCID mice, while being non-toxic in vivo. The major pathways in melanoma signaling mediated through BRAF, WNT/ß-catenin and Akt-NF-κB converging in MITF-M, the master regulator of melanomagenesis, were inhibited by DW-F5, leading to complete abolition of MITF-M. Purification of DW-F5 led to the isolation of two cytotoxic components, one being tryptanthrin and the other being an unidentified aliphatic fraction. The overall study predicts Wrightia tinctoria as a candidate plant to be further explored for anticancer properties and DW-F5 as a forthcoming drug formulation to be evaluated as a chemotherapeutic agent against malignant melanoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apocynaceae/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Folhas de Planta/química , Quinazolinas/química , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA