Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
2.
Acta Crystallogr D Struct Biol ; 76(Pt 6): 594-607, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496220

RESUMO

Methionine adenosyltransferase (MAT) deficiency, characterized by isolated persistent hypermethioninemia (IPH), is caused by mutations in the MAT1A gene encoding MATαl, one of the major hepatic enzymes. Most of the associated hypermethioninemic conditions are inherited as autosomal recessive traits; however, dominant inheritance of hypermethioninemia is caused by an Arg264His (R264H) mutation. This mutation has been confirmed in a screening programme of newborns as the most common mutation in babies with IPH. Arg264 makes an inter-subunit salt bridge located at the dimer interface where the active site assembles. Here, it is demonstrated that the R264H mutation results in greatly reduced MAT activity, while retaining its ability to dimerize, indicating that the lower activity arises from alteration at the active site. The first crystallographic structure of the apo form of the wild-type MATαl enzyme is provided, which shows a tetrameric assembly in which two compact dimers combine to form a catalytic tetramer. In contrast, the crystal structure of the MATαl R264H mutant reveals a weaker dimeric assembly, suggesting that the mutation lowers the affinity for dimer-dimer interaction. The formation of a hetero-oligomer with the regulatory MATßV1 subunit or incubation with a quinolone-based compound (SCR0911) results in the near-full recovery of the enzymatic activity of the pathogenic mutation R264H, opening a clear avenue for a therapeutic solution based on chemical interventions that help to correct the defect of the enzyme in its ability to metabolize methionine.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glicina N-Metiltransferase/deficiência , Padrões de Herança , Metionina Adenosiltransferase/química , Domínio Catalítico , Glicina N-Metiltransferase/genética , Humanos , Metionina Adenosiltransferase/genética , Mutação , Multimerização Proteica
3.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 660-669, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282475

RESUMO

Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1-CD98hc, a HAT, transports essential amino acids and drugs across the blood-brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1-CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3-3.5 Šresolution [Yan et al. (2019), Nature (London), 568, 127-130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão/química , Transportador 1 de Aminoácidos Neutros Grandes/química , Domínios e Motivos de Interação entre Proteínas , Microscopia Crioeletrônica/métodos , Células HEK293 , Humanos , Modelos Moleculares
4.
FEBS J ; 286(11): 2135-2154, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776190

RESUMO

Methylation is an underpinning process of life and provides control for biological processes such as DNA synthesis, cell growth, and apoptosis. Methionine adenosyltransferases (MAT) produce the cellular methyl donor, S-Adenosylmethionine (SAMe). Dysregulation of SAMe level is a relevant event in many diseases, including cancers such as hepatocellular carcinoma and colon cancer. In addition, mutation of Arg264 in MATα1 causes isolated persistent hypermethioninemia, which is characterized by low activity of the enzyme in liver and high level of plasma methionine. In mammals, MATα1/α2 and MATßV1/V2 are the catalytic and the major form of regulatory subunits, respectively. A gating loop comprising residues 113-131 is located beside the active site of catalytic subunits (MATα1/α2) and provides controlled access to the active site. Here, we provide evidence of how the gating loop facilitates the catalysis and define some of the key elements that control the catalytic efficiency. Mutation of several residues of MATα2 including Gln113, Ser114, and Arg264 lead to partial or total loss of enzymatic activity, demonstrating their critical role in catalysis. The enzymatic activity of the mutated enzymes is restored to varying degrees upon complex formation with MATßV1 or MATßV2, endorsing its role as an allosteric regulator of MATα2 in response to the levels of methionine or SAMe. Finally, the protein-protein interacting surface formed in MATα2:MATß complexes is explored to demonstrate that several quinolone-based compounds modulate the activity of MATα2 and its mutants, providing a rational for chemical design/intervention responsive to the level of SAMe in the cellular environment. ENZYMES: Methionine adenosyltransferase (EC.2.5.1.6). DATABASE: Structural data are available in the RCSB PDB database under the PDB ID 6FBN (Q113A), 6FBP (S114A: P221 21 ), 6FBO (S114A: I222), 6FCB (P115G), 6FCD (R264A), 6FAJ (wtMATα2: apo), 6G6R (wtMATα2: holo).


Assuntos
Metionina Adenosiltransferase/química , S-Adenosilmetionina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Apoptose/genética , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Domínio Catalítico/genética , Proliferação de Células/genética , Metilação de DNA/genética , Replicação do DNA/genética , Regulação Enzimológica da Expressão Gênica/genética , Glicina N-Metiltransferase/deficiência , Glicina N-Metiltransferase/genética , Humanos , Fígado/enzimologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metionina Adenosiltransferase/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Quinolonas/metabolismo , S-Adenosilmetionina/química
5.
Nat Commun ; 9(1): 1693, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703933

RESUMO

Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity. Assisted formation of the unusual SOD1 cytosolic disulphide bond could have potential therapeutic applications. In less reducing environments, ebselen forms a selenylsulphide with Cys111 and restores the monomer-dimer equilibrium of A4V SOD1 to wild-type. Ebselen is therefore a potent bifunctional pharmacological chaperone for SOD1 that combines properties of the SOD1 chaperone hCCS and the recently licenced antioxidant drug, edaravone.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Antioxidantes/farmacologia , Azóis/farmacologia , Compostos Organosselênicos/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Antioxidantes/uso terapêutico , Asma/tratamento farmacológico , Asma/patologia , Azóis/uso terapêutico , Cristalografia por Raios X , Cisteína/química , Dissulfetos/química , Edaravone/farmacologia , Células HEK293 , Humanos , Isoindóis , Chaperonas Moleculares/metabolismo , Mutação , Ressonância Magnética Nuclear Biomolecular , Compostos Organosselênicos/uso terapêutico , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética
6.
Sci Signal ; 11(525)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636388

RESUMO

The symbiotic nitrogen-fixing bacterium Bradyrhizobium japonicum is critical to the agro-industrial production of soybean because it enables the production of high yields of soybeans with little use of nitrogenous fertilizers. The FixL and FixJ two-component system (TCS) of this bacterium ensures that nitrogen fixation is only stimulated under conditions of low oxygen. When it is not bound to oxygen, the histidine kinase FixL undergoes autophosphorylation and transfers phosphate from adenosine triphosphate (ATP) to the response regulator FixJ, which, in turn, stimulates the expression of genes required for nitrogen fixation. We purified full-length B. japonicum FixL and FixJ proteins and defined their structures individually and in complex using small-angle x-ray scattering, crystallographic, and in silico modeling techniques. Comparison of active and inactive forms of FixL suggests that intramolecular signal transduction is driven by local changes in the sensor domain and in the coiled-coil region connecting the sensor and histidine kinase domains. We also found that FixJ exhibits conformational plasticity not only in the monomeric state but also in tetrameric complexes with FixL during phosphotransfer. This structural characterization of a complete TCS contributes both a mechanistic and evolutionary understanding to TCS signal relay, specifically in the context of the control of nitrogen fixation in root nodules.


Assuntos
Proteínas de Bactérias/metabolismo , Hemeproteínas/metabolismo , Histidina Quinase/metabolismo , Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Hemeproteínas/química , Hemeproteínas/genética , Histidina Quinase/química , Histidina Quinase/genética , Modelos Moleculares , Fixação de Nitrogênio/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Transdução de Sinais/genética
7.
Sci Rep ; 7: 43580, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272458

RESUMO

LAT1 (SLC7A5) is a transporter for both the uptake of large neutral amino acids and a number of pharmaceutical drugs. It is expressed in numerous cell types including T-cells, cancer cells and brain endothelial cells. However, mechanistic knowledge of how it functions and its interactions with lipids are unknown or limited due to inability of obtaining stable purified protein in sufficient quantities. Our data show that depleting cellular cholesterol reduced the Vmax but not the Km of the LAT1 mediated uptake of a model substrate into cells (L-DOPA). A soluble cholesterol analogue was required for the stable purification of the LAT1 with its chaperon CD98 (4F2hc,SLC3A2) and that this stabilised complex retained the ability to interact with a substrate. We propose cholesterol interacts with the conserved regions in the LAT1 transporter that have been shown to bind to cholesterol/CHS in Drosophila melanogaster dopamine transporter. In conclusion, LAT1 is modulated by cholesterol impacting on its stability and transporter activity. This novel finding has implications for other SLC7 family members and additional eukaryotic transporters that contain the LeuT fold.


Assuntos
Colesterol/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Lipídeos de Membrana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Colesterol/química , Proteína-1 Reguladora de Fusão/metabolismo , Expressão Gênica , Humanos , Cinética , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Levodopa/metabolismo , Levodopa/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
8.
Sci Rep ; 6: 29179, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412848

RESUMO

Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 µM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites.


Assuntos
Descoberta de Drogas , Quinolonas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Gatos , Citocromos b/genética , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Fezes/parasitologia , Humanos , Oocistos/efeitos dos fármacos , Oocistos/patogenicidade , Contagem de Ovos de Parasitas , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasmose/genética , Toxoplasmose/parasitologia
9.
Proc Natl Acad Sci U S A ; 113(8): 2104-9, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858410

RESUMO

The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE.


Assuntos
Metionina Adenosiltransferase/química , S-Adenosilmetionina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos
10.
IUCrJ ; 1(Pt 4): 240-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25075345

RESUMO

S-Adenosylmethionine (SAMe) is the principal methyl donor of the cell and is synthesized via an ATP-driven process by methionine adenosyltransferase (MAT) enzymes. It is tightly linked with cell proliferation in liver and colon cancer. In humans, there are three genes, mat1A, mat2A and mat2B, which encode MAT enzymes. mat2A and mat2B transcribe MATα2 and MATß enzyme subunits, respectively, with catalytic and regulatory roles. The MATα2ß complex is expressed in nearly all tissues and is thought to be essential in providing the necessary SAMe flux for methylation of DNA and various proteins including histones. In human hepatocellular carcinoma mat2A and mat2B genes are upregulated, highlighting the importance of the MATα2ß complex in liver disease. The individual subunits have been structurally characterized but the nature of the complex has remained elusive despite its existence having been postulated for more than 20 years and the observation that MATß is often co-localized with MATα2. Though SAMe can be produced by MAT(α2)4 alone, this paper shows that the V max of the MATα2ß complex is three- to fourfold higher depending on the variants of MATß that participate in complex formation. Using X-ray crystallography and solution X-ray scattering, the first structures are provided of this 258 kDa functional complex both in crystals and solution with an unexpected stoichiometry of 4α2 and 2ßV2 subunits. It is demonstrated that the N-terminal regulates the activity of the complex and it is shown that complex formation takes place surprisingly via the C-terminal of MATßV2 that buries itself in a tunnel created at the interface of the MAT(α2)2. The structural data suggest a unique mechanism of regulation and provide a gateway for structure-based drug design in anticancer therapies.

11.
Proc Natl Acad Sci U S A ; 108(38): 15780-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21900609

RESUMO

Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Citocromos c'/química , Conformação Proteica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/prevenção & controle , Cristalização , Cristalografia por Raios X , Citocromos c'/genética , Citocromos c'/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Heme/química , Heme/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Análise Espectral Raman
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 12): 1204-8, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20054112

RESUMO

SurE is a stationary-phase survival protein found in bacteria, eukaryotes and archaea that exhibits a divalent-metal-ion-dependent phosphatase activity and acts as a nucleotidase and polyphosphate phosphohydrolase. The structure of the SurE protein from the hyperthermophile Aquifex aeolicus has been solved at 1.5 A resolution using molecular replacement with one dimer in the asymmetric unit and refined to an R factor of 15.6%. The crystal packing reveals that two dimers assemble to form a tetramer, although gel-filtration chromatography showed the presence of only a dimer in solution. The phosphatase active-site pocket was occupied by sulfate ions from the crystallization medium.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Fosfatase Ácida/química , Bactérias/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Genes Bacterianos , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA