Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Environ Contam Toxicol ; 241: 73-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27300014

RESUMO

This review summarizes the findings of the most recent studies, published from 2000 to 2016, which focus on the biogeochemical behavior of Cd in soil-plant systems and its impact on the ecosystem. For animals and people not subjected to a Cd-contaminated environment, consumption of Cd contaminated food (vegetables, cereals, pulses and legumes) is the main source of Cd exposure. As Cd does not have any known biological function, and can further cause serious deleterious effects both in plants and mammalian consumers, cycling of Cd within the soil-plant system is of high global relevance.The main source of Cd in soil is that which originates as emissions from various industrial processes. Within soil, Cd occurs in various chemical forms which differ greatly with respect to their lability and phytoavailability. Cadmium has a high phytoaccumulation index because of its low adsorption coefficient and high soil-plant mobility and thereby may enter the food chain. Plant uptake of Cd is believed to occur mainly via roots by specific and non-specific transporters of essential nutrients, as no Cd-specific transporter has yet been identified. Within plants, Cd causes phytotoxicity by decreasing nutrient uptake, inhibiting photosynthesis, plant growth and respiration, inducing lipid peroxidation and altering the antioxidant system and functioning of membranes. Plants tackle Cd toxicity via different defense strategies such as decreased Cd uptake or sequestration into vacuoles. In addition, various antioxidants combat Cd-induced overproduction of ROS. Other mechanisms involve the induction of phytochelatins, glutathione and salicylic acid.


Assuntos
Cádmio/toxicidade , Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Cádmio/análise , Cádmio/farmacocinética , Hormese , Inativação Metabólica , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plantas/metabolismo , Poluentes do Solo/farmacocinética
2.
Sci Total Environ ; 408(24): 6148-57, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20920817

RESUMO

The use of Biotic Ligand Models (BLMs) to normalize metal ecotoxicity data and predict effects in non-BLM organisms should be supported by quantitative evidence. This study determined the ability of chronic nickel BLMs developed for the cladocera Daphnia magna and Ceriodaphnia dubia to predict chronic nickel toxicity to three invertebrates for which no specific BLMs were developed. Those invertebrates were the snail Lymnaea stagnalis, the insect Chironomus tentans, and the rotifer Brachionus calyciflorus. Similarly, we also determined the ability of chronic nickel BLMs developed for the alga Pseudokirchneriella subcapitata and the terrestrial vascular plant Hordeum vulgare to predict chronic nickel toxicity to the aquatic vascular plant Lemna minor. Chronic nickel toxicity to the three invertebrates and the aquatic plant were measured in five natural waters that varied in pH, Ca, Mg, and dissolved organic carbon (DOC), which are known to affect chronic nickel toxicity and are the important input variables for the chronic nickel BLMs. Nickel toxicity to the three invertebrates varied considerably among the test waters, i.e., a 14-fold variation of EC50s in L. stagnalis, a 3-fold variation in EC20s in C. tentans, and a 10-fold variation in EC20s in B. calyciflorus, but the cladoceran BLMs were able to predict nickel effect concentrations within a factor of two. Nickel toxicity (EC50s) to L. minor varied by 6-fold among the test waters. Although the P. subcapitata and H. vulgare BLMs offered reasonable predictions of nickel EC50s to L. minor, the D. magna and C. dubia BLM showed better predictions. Our results confirm the influence of site-specific pH, hardness, and DOC on chronic nickel toxicity to aquatic organisms, and support the use of chronic nickel BLMs to manage this influence through normalizations of ecotoxicity data.


Assuntos
Invertebrados/efeitos dos fármacos , Modelos Biológicos , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Araceae/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Monitoramento Ambiental , Eucariotos/efeitos dos fármacos , Água Doce/química , Ligantes , Lymnaea/efeitos dos fármacos , Níquel/química , Rotíferos/efeitos dos fármacos , Testes de Toxicidade Crônica , Poluentes Químicos da Água/química
3.
Environ Toxicol Chem ; 28(8): 1704-10, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19374472

RESUMO

The focus of the present study was to investigate the potential for Al3+, Mg2+, and H+ to influence Ni2+ toxicity for barley seedlings grown in acidic aqueous solutions and to assess the capacity of a two-site terrestrial biotic ligand model (tBLM) to accurately predict 50% effect activities (EA50s). To accomplish these objectives, 48-h EA50Ni2+ values were obtained for three sets of exposures in which the pH and activity of Al3+ and Mg2+ were varied. Exposures contained both Al alone and in combination with Mg so that compound ion effects could be investigated. A tBLM was then constructed to predict EA50Ni2+ values from the exposure solution chemistry. The results show a slight protective effect of H+ against Ni2+ toxicity and a strong protective effect of Mg2+, as indicated by a 4.6- and 8.0-fold increase in the measured EA50Ni2+ values corresponding to changes in pH from 6.0 to 4.5 and {Mg2+} from 0 to 1.40 mM, respectively. Increasing solution {Al3+} from 0 to 0.5 microM had no effect on Ni2+ toxicity, although Al itself negatively affected root elongation. Comparison of EA50 values calculated as both Ni2+ and measured concentration of total Ni in the root ([Root-Ni]T) showed [Root-Ni]T to be a more normalized measure of Ni bioavailability. The strong correlation between root growth inhibition and tBLM-predicted root-Ni accumulation suggests that toxicity was influenced by Ni2+ binding to low-affinity ligands within the cell wall, in addition to Ni2+ uptake through Mg2+ transporters. Predicted EA50Ni2+ values generated with the model were all within a factor of +/-1.5 from measured values--a result that emphasizes the advantage of using the tBLM for risk assessment.


Assuntos
Hordeum/efeitos dos fármacos , Modelos Biológicos , Níquel/toxicidade , Poluentes do Solo/toxicidade , Alumínio/química , Hordeum/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Magnésio/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Prótons , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA