Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Drugs Ther ; 36(6): 1109-1119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34491473

RESUMO

PURPOSE: Abdominal aortic aneurysm (AAA) rupture is one of the most common causes of mortality in cardiovascular diseases, but currently there is no approved drug for AAA treatment or prevention in the clinic. Naringenin (NGN) has been reported to have anti-AAA effects. However, water solubility and in vivo absorption of NGN are not satisfactory, which leads to its low bioavailability, thus affecting its pharmacological effects. In this project, the improving effects of isonicotinamide (INT) co-crystal and hydroxy propyl methyl cellulose (HPMC) or polyvinyl pyrrolidone (PVP) on the solubility, in vivo absorption, and anti-AAA effects of NGN were evaluated. METHODS: In the current study, co-crystals of naringenin-isonicotinamide (NGN-INT) were prepared, and effects of PVP or HPMC on precipitation rate, supersaturation, and bioavailability of NGN were explored. In addition, with or without HPMC supply, the effects of NGN-INT co-crystal on anti-AAA efficacy of NGN were investigated on an elastase-induced AAA mouse model, and the results were compared with the efficacy of the NGN crude drug. RESULTS: Our results demonstrate that NGN-INT formulation, compared to the NGN crude drug, enhanced the dissolution rate of NGN and significantly increased Cmax and AUC(0-∞) of NGN by 18 times and 1.97 times, respectively. Addition of PVP or HPMC in NGN-INT co-crystal further increased bioavailability of NGN in NGN-INT. The in vivo pharmacodynamic study showed that NGN-INT with HPMC significantly improved the inhibitory effects of NGN against AAA. CONCLUSION: NGN-INT significantly improved the absorption and aortic protective effects of NGN. The supersaturation-prolonging effect of HPMC further enhanced bioavailability and anti-AAA effects of NGN-INT.


Assuntos
Aneurisma da Aorta Abdominal , Camundongos , Animais , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/prevenção & controle , Derivados da Hipromelose/química , Solubilidade , Povidona/química
2.
Front Cell Dev Biol ; 9: 697539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262908

RESUMO

BACKGROUND: Pathophysiological vascular remodeling in response to disturbed flow with low and oscillatory shear stress (OSS) plays important roles in atherosclerosis progression. Pomegranate extraction (PE) was reported having anti-atherogenic effects. However, whether it can exert a beneficial effect against disturbed flow-induced pathophysiological vascular remodeling to inhibit atherosclerosis remains unclear. The present study aims at investigating the anti-atherogenic effects of pomegranate peel polyphenols (PPP) extraction and its purified compound punicalagin (PU), as well as their protective effects on disturbed flow-induced vascular dysfunction and their underlying molecular mechanisms. METHODS: The anti-atherogenic effects of PPP/PU were examined on low-density lipoprotein receptor knockout mice fed with a high fat diet. The vaso-protective effects of PPP/PU were examined in rat aortas using myograph assay. A combination of in vivo experiments on rats and in vitro flow system with human endothelial cells (ECs) was used to investigate the pharmacological actions of PPP/PU on EC dysfunction induced by disturbed flow. In addition, the effects of PPP/PU on vascular smooth muscle cell (VSMC) dysfunction were also examined. RESULTS: PU is the effective component in PPP against atherosclerosis. PPP/PU evoked endothelium-dependent relaxation in rat aortas. PPP/PU inhibited the activation of Smad1/5 in the EC layers at post-stenotic regions of rat aortas exposed to disturbed flow with OSS. PPP/PU suppressed OSS-induced expression of cell cycle regulatory and pro-inflammatory genes in ECs. Moreover, PPP/PU inhibited inflammation-induced VSMC dysfunction. CONCLUSION: PPP/PU protect against OSS-induced vascular remodeling through inhibiting force-specific activation of Smad1/5 in ECs and this mechanism contributes to their anti-atherogenic effects.

3.
Nanomedicine ; 32: 102310, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184021

RESUMO

In this study, we prepared naringenin (NGN) loaded nanostructured lipid carrier (NGN-NLC) and investigated its characterizations, transepithelial transport, intestinal absorption and inhibitory effects on nonalcoholic fatty liver disease (NAFLD) induced by a methionine choline deficient (MCD) diet in mice. The NGN-NLC, prepared by a method of emulsion-evaporation plus low temperature-solidification, displayed high drug loading capacity of 22.5 ± 1.7%. Compared to the NGN crude drug, the NGN-NLC, at an equal NGN dose, improved NGN release rate by 3.5-fold and elevated NGN transepithelial transport and intestinal absorption through enhancing intracellular transport of clathrin pathway and escaping p-gp efflux; at an 8-fold lower NGN dose, showed comparable pharmacokinetic parameters, but elevated liver NGN distribution by 1.5-fold, reduced MCD diet-induced hepatic lipid deposition by 3-fold. These results suggest that the NLC formulation significantly increased the inhibitory effects of NGN on NAFLD because of the improved drug release rate, transepithelial transport and intestinal absorption, and the elevated oral bioavailability and liver NGN distribution.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos , Flavanonas/uso terapêutico , Absorção Intestinal , Lipídeos/química , Nanoestruturas/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Transporte Biológico/efeitos dos fármacos , Cães , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Células Epiteliais/metabolismo , Flavanonas/química , Flavanonas/farmacocinética , Flavanonas/farmacologia , Absorção Intestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Ratos Sprague-Dawley , Temperatura
4.
Br J Pharmacol ; 177(1): 204-216, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31478560

RESUMO

BACKGROUND AND PURPOSE: Abdominal aortic aneurysm (AAA) is a degenerative disease with irreversible and progressive dilation of the artery. But there are few options for efficacious treatment except for traditional surgery. Probucol has been widely applied to treat hyperlipidaemia and atherosclerosis in clinic, but whether it can protect against AAA remains unknown. In this study, the protective effects of probucol against AAA and its related mechanisms were explored. EXPERIMENTAL APPROACH: The model of AAA was induced in mice by periaortic application of elastase (40 min) to the abdominal aorta. Probucol at different doses was administered by daily gavage, starting on the same day as AAA was induced, for 14 days. In vitro, cultures of rat vascular smooth muscle cells (VSMCs) were stimulated with TNF-α. Haem oxygenase (HO)-1 siRNA and HO-1 plasmid were used to regulate the expression or activity of HO-1 in the VSMCs and to clarify the effects of HO-1. KEY RESULTS: Probucol dose-dependently prevented the development of AAA, reflected by decreased incidence of AAA, diameter of aortic dilation, elastin degradation, and infiltration of inflammatory cells. Probucol also protected VSMCs from oxidative injury and enhanced elastin biosynthesis. This anti-inflammatory effects of probucol on VSMCs were significantly decreased when HO-1 was inhibited by siRNA. CONCLUSION AND IMPLICATIONS: Probucol protected against AAA through inhibiting the degradation of elastin induced by inflammation and oxidation and by facilitating the biosynthesis of elastin. HO-1 played a crucial role in the anti-inflammatory effects of probucol in VSMCs.


Assuntos
Anticolesterolemiantes/uso terapêutico , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/prevenção & controle , Elastase Pancreática/toxicidade , Probucol/uso terapêutico , Animais , Anticolesterolemiantes/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Células Cultivadas , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Probucol/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA