Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(52): 58149-58160, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33326226

RESUMO

Lateral flow immunoassay (LFIA), as a prominent point-of-care (POC) test platform, has been extensively adopted for rapid, on-site, and facile diagnosis of pathogen infections and disease biomarkers. Exploring novel structured optical labels of LFIA with amplified signal and complementary detection modes favors the sensitive and flexible POC diagnosis. Here, bimodal labels with both colorimetric and fluorescent readout were fabricated via a layered sequential assembly strategy based on affinity templates and hydrophobic metal-containing nanounits. High-quality colorimetric and fluorescent nanoparticles were densely incorporated into the colloidal supports and confined in separated regions, without interfering with each other. The hierarchical integration of gold nanoparticles and quantum dots with high loading density and good optical preservation realized dual readout and amplified signals from the assemblies of individual single nanoparticles. The "all-in-one" optical labels allowed both colorimetric and fluorescent detection of cystatin C (Cys C) after surface conjugation with antibodies. The LFIA strips revealed noninterfering dual signals for both visual inspection and quantitative detection of Cys C via the naked eye and portable devices, respectively. The limits of detection by colorimetric and fluorescent modes were 0.61 and 0.24 ng mL-1, respectively. The novel LFIA platform demonstrated sensitive, specific, and reproducible POC testing of biomarkers with flexible detection modes and was reliable for clinical diagnosis.


Assuntos
Corantes Fluorescentes/química , Imunoensaio/métodos , Limite de Detecção , Cistatina C/análise , Cistatina C/química , Modelos Moleculares , Conformação Molecular
2.
J Med Chem ; 61(19): 8908-8916, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30247036

RESUMO

To enable the large-scale synthesis of coibamide A, we developed an improved synthetic strategy for this class of cyclodepsipeptide. The versatility of the synthetic procedure was demonstrated by the preparation of a series of designed coibamide A analogues, which enabled the preliminary structure-activity relationship (SAR) studies for this compound. Although most modifications of coibamide A resulted in decrease or loss of the antiproliferativity, we found that versatile substitution at position 3 was well tolerated. Remarkably, a simplified analogue, [MeAla3-MeAla6]-coibamide (1f), not only showed nearly the same inhibition as coibamide A against the tested cancer cells but also significantly inhibited tumor growth in vivo. The improved synthetic strategy and the relevant trends of SAR disclosed in this study will be valuable for further optimization of the overall profile of coibamide A.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Depsipeptídeos/síntese química , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
ACS Appl Mater Interfaces ; 10(15): 12544-12552, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29569431

RESUMO

Exploring multifunctional nanomaterials from biocompatible constituents, with integrated imaging and targeted combination therapeutic modalities of tumors in vivo, provides great prospects for clinical cancer theranostic applications. Here, we report a combination strategy for functionalization of polydopamine (PDA) nanohosts with magnetic response and stimuli-controlled drug release capabilities for in vivo cancer theranostic. The high processability of PDA as nanotemplates and surface coating layers as well as its natural affinity to metals facilitated the sandwich of a compact iron oxide nanoparticle layer into the PDA matrix, realizing enhanced near-infrared (NIR) photothermal conversion and strong superparamagnetic responsiveness. Additionally, the high reactivity of the PDA surface allowed facile linkage with reduction-responsive prodrugs and polyethylene glycol chains for in vivo chemotherapy of cancer. Under the magnetic resonance imaging/photoacoustic imaging dual-modal tumor imaging and active magnetic tumor targeting of the nanoagents in vivo, the effective tumor eradication was achieved via synergetic NIR photothermal ablation and anticancer drug delivery.


Assuntos
Nanoestruturas , Humanos , Indóis , Neoplasias , Polímeros , Nanomedicina Teranóstica
4.
Mol Cancer Ther ; 17(5): 988-1002, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483218

RESUMO

The serine/threonine kinase Polo-like kinase 1 (Plk1) plays a pivotal role in cell proliferation and has been validated as a promising anticancer drug target. However, very limited success has been achieved in clinical applications using existing Plk1 inhibitors, due to lack of sufficient specificity toward Plk1. To develop a novel Plk1 inhibitor with high selectivity and efficacy, we designed and synthesized a pyrrole-imidazole polyamide-Hoechst conjugate, PIP3, targeted to specific DNA sequence in the PLK1 promoter. PIP3 could specifically inhibit the cell cycle-regulated Plk1 expression and consequently retard tumor cell growth. Cancer cells treated with PIP3 exhibited severe mitotic defects and increased apoptosis, whereas normal cells were not affected by PIP3 treatment. Furthermore, subcutaneous injection of PIP3 into mice bearing human cancer xenografts induced significant tumor growth suppression with low host toxicity. Therefore, PIP3 exhibits the potential as an effective agent for targeted cancer therapy. Mol Cancer Ther; 17(5); 988-1002. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Células A549 , Animais , Antineoplásicos/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Corantes Fluorescentes/química , Células HeLa , Humanos , Imidazóis/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/enzimologia , Neoplasias/patologia , Nylons/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirróis/química , Quinase 1 Polo-Like
5.
6.
Nanoscale ; 7(2): 806-13, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25437262

RESUMO

Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

7.
Nanoscale ; 6(18): 10710-6, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25096971

RESUMO

This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM(-1) s(-1)) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery.


Assuntos
Portadores de Fármacos/química , Ácido Fólico/química , Micelas , Polímeros/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/toxicidade , Óxido Ferroso-Férrico/química , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Microscopia Confocal , Neoplasias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA