Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Plast ; 2022: 6472475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915650

RESUMO

Low-intensity focused ultrasound (LIFU) is a potential noninvasive method to alleviate allodynia by modulating the central nervous system. However, the underlying analgesic mechanisms remain unexplored. Here, we assessed how LIFU at the anterior cingulate cortex (ACC) affects behavior response and central plasticity resulting from chronic constrictive injury (CCI). The safety of LIFU stimulation was assessed by hematoxylin and eosin (H&E) and Fluoro-Jade C (FJC) staining. A 21-day ultrasound exposure therapy was conducted from day 91 after CCI surgery in mice. We assessed the 50% mechanical withdrawal threshold (MWT50) using Von Frey filaments (VFFs). The expression levels of microtubule-associated protein 2 (MAP2), growth-associated protein 43 (GAP43), and tau were determined via western blotting (WB) and immunofluorescence (IF) staining to evaluate the central plasticity in ACC. The regions of ACC were activated effectively and safely by LIFU stimulation, which significantly increased the number of c-fos-positive cells (P < 0.05) with no bleeding, coagulative necrosis, and neuronal loss. Under chronic neuropathic pain- (CNP-) induced allodynia, MWT50 decreased significantly (P < 0.05), and overexpression of MAP2, GAP43, and tau was also observed. After 3 weeks of treatment, significant increases in MWT50 were found in the CCI+LIFU group compared with the CCI group (P < 0.05). WB and IF staining both demonstrated a significant reduction in the expression levels of MAP2, GAP43, and tau (P < 0.05). LIFU treatment on ACC can effectively attenuate CNP-evoked mechanical sensitivity to pain and reverse aberrant central plasticity.


Assuntos
Hiperalgesia , Neuralgia , Animais , Giro do Cíngulo/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/terapia , Camundongos , Neuralgia/metabolismo , Neuralgia/terapia , Plasticidade Neuronal , Ratos , Ratos Sprague-Dawley
2.
Front Cell Neurosci ; 16: 884788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656407

RESUMO

Parkinson's disease (PD) is the second most common chronic neurodegenerative disease globally; however, it lacks effective treatment at present. Focused ultrasound (FUS) combined with microbubbles could increase the efficacy of drug delivery to specific brain regions and is becoming a promising technology for the treatment of central nervous system diseases. In this study, we explored the therapeutic potential of FUS-mediated blood-brain barrier (BBB) opening of the left striatum to deliver gastrodin (GAS) in a subacute PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration of GAS in the left hemisphere was detected by ultra-high performance liquid chromatography electrospray Q-Orbitrap mass spectrometry (UHPLC/ESI Q-Orbitrap) and the distribution of tyrosine hydroxylase (TH) neurons was detected by immunohistochemical staining. The expression of TH, Dopamine transporter (DAT), cleaved-caspase-3, B-cell lymphoma 2 (Bcl-2), brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95), and synaptophysin (SYN) protein were detected by western blotting. Analysis showed that the concentration of GAS in the left hemisphere of PD mice increased by approximately 1.8-fold after the BBB was opened. FUS-mediated GAS delivery provided optimal neuroprotective effects and was superior to the GAS or FUS control group. In addition, FUS enhanced GAS delivery significantly increased the expression of Bcl-2, BDNF, PSD-95, and SYN protein in the left striatum (P < 0.05) and reduced the levels of cleaved-caspase-3 remarkably (P = 0.001). In conclusion, the enhanced delivery by FUS effectively strengthened the protective effect of GAS on dopaminergic neurons which may be related to the reinforcement of the anti-apoptotic activity and the expression of synaptic-related proteins in the striatum. Data suggests that FUS-enhanced GAS delivery may represent a new strategy for PD treatment.

3.
Int J Gen Med ; 14: 9721-9732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938101

RESUMO

OBJECTIVE: In this study, umbilical cord mesenchymal stem cell (UC-MSC) transplantation was used to treat patients with spinal cord injury (SCI). The microstructural changes of the spinal cord before and after transplantation were observed by diffusion tensor imaging (DTI). METHODS: From January 2014 to May 2015, seven patients who met the inclusion criteria were enrolled in this study. In the experimental group, both UC-MSC transplantation and comprehensive rehabilitation treatment were applied, while the control group received only comprehensive rehabilitation treatment. American Spinal Injury Association (ASIA) sensory and motor scores and the degree of SCI, spasticity, and urine/defecation functions were measured and evaluated together with DTI before the treatment and again at two and six months after the first treatment. RESULTS: From the DTI, the changes in the fractional anisotropy (FA) value and the apparent diffusion coefficient (ADC) value were as follows: in the experimental group, there were significant differences in the FA and ADC values before and after treatment (P < 0.05) with a decreased ADC value and an increased FA value. The differences in the ADC and FA values of the normal layer and the lesion layer before and after treatment were compared. The differences in ADC and FA at the lesion layer before and after transplantation were greater than those of the normal layer, and the differences were statistically significant (P < 0.05). In the experimental group, one patient with incomplete SCI and one patient with a short course of complete SCI improved in terms of light touch, acupuncture sensation, and motor score. One patient with incomplete SCI achieved improvement in spasticity and urine/defecation functions. CONCLUSION: The combination of UC-MSC transplantation and comprehensive rehabilitation therapy could help to promote the structural repair of the spinal nerve in patients with SCI.

4.
Front Med (Lausanne) ; 8: 756940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901069

RESUMO

Background: Neuropathic pain (NP), a severe and disruptive symptom following many diseases, normally restricts patients' physical functions and leads to anxiety and depression. As an economical and effective therapy, exercise may be helpful in NP management. However, few guidelines and reviews focused on exercise therapy for NP associated with specific diseases. The study aimed to summarize the effectiveness and efficacy of exercise for various diseases with NP supported by evidence, describe expert recommendations for NP from different causes, and inform policymakers of the guidelines. Design: A systematic review and expert consensus. Methods: A systematic search was conducted in PubMed. We included systematic review and meta-analysis, randomized controlled trials (RCTs), which assessed patients with NP. Studies involved exercise intervention and outcome included pain intensity at least. Physiotherapy Evidence Database and the Assessment of Multiple Systematic reviews tool were used to grade the quality assessment of the included RCTs and systematic reviews, respectively. The final grades of recommendation were based on strength of evidence and a consensus discussion of results of Delphi rounds by the Delphi consensus panel including 21 experts from the Chinese Association of Rehabilitation Medicine. Results: Eight systematic reviews and 21 RCTs fulfilled all of the inclusion criteria and were included, which were used to create the 10 evidence-based consensus statements. The 10 expert recommendations regarding exercise for NP symptoms were relevant to the following 10 different diseases: spinal cord injury, stroke, multiple sclerosis, Parkinson's disease, cervical radiculopathy, sciatica, diabetic neuropathy, chemotherapy-induced peripheral neuropathy, HIV/AIDS, and surgery, respectively. The exercise recommended in the expert consensus involved but was not limited to muscle stretching, strengthening/resistance exercise, aerobic exercise, motor control/stabilization training and mind-body exercise (Tai Chi and yoga). Conclusions: Based on the available evidence, exercise is helpful to alleviate NP intensity. Therefore, these expert consensuses recommend that proper exercise programs can be considered as an effective alternative treatment or complementary therapy for most patients with NP. The expert consensus provided medical staff and policymakers with applicable recommendations for the formulation of exercise prescription for NP. This consensus statement will require regular updates after five-ten years.

5.
Neural Plast ; 2021: 6659668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953740

RESUMO

Effective treatment remains lacking for neuropathic pain (NP), a type of intractable pain. Low-intensity focused ultrasound (LIFU), a noninvasive, cutting-edge neuromodulation technique, can effectively enhance inhibition of the central nervous system (CNS) and reduce neuronal excitability. We investigated the effect of LIFU on NP and on the expression of potassium chloride cotransporter 2 (KCC2) in the spinal cords of rats with peripheral nerve injury (PNI) in the lumbar 4-lumbar 5 (L4-L5) section. In this study, rats received PNI surgery on their right lower legs followed by LIFU stimulation of the L4-L5 section of the spinal cord for 4 weeks, starting 3 days after surgery. We used the 50% paw withdraw threshold (PWT50) to evaluate mechanical allodynia. Western blotting (WB) and immunofluorescence (IF) were used to calculate the expression of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), and KCC2 in the L4-L5 portion of the spinal cord after the last behavioral tests. We found that PWT50 decreased (P < 0.05) 3 days post-PNI surgery in the LIFU- and LIFU+ groups and increased (P < 0.05) after 4 weeks of LIFU stimulation. The expression of p-CREB and CaMKIV decreased (P < 0.05) and that of KCC2 increased (P < 0.05) after 4 weeks of LIFU stimulation, but that of p-ERK1/2 (P > 0.05) was unaffected. Our study showed that LIFU could effectively alleviate NP behavior in rats with PNI by increasing the expression of KCC2 on spinal dorsal corner neurons. A possible explanation is that LIFU could inhibit the activation of the CaMKIV-KCC2 pathway.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Região Lombossacral , Neuralgia/terapia , Transdução de Sinais , Simportadores/biossíntese , Terapia por Ultrassom/métodos , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Hiperalgesia/fisiopatologia , Hiperalgesia/terapia , Região Lombossacral/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Estimulação Física , Ratos , Ratos Sprague-Dawley , Cotransportadores de K e Cl-
6.
Neuromolecular Med ; 22(3): 401-410, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32253686

RESUMO

Reactive oxygen species (ROS) are continuously produced as byproducts of aerobic metabolism. Oxidative stress (OS) plays an important role in the occurrence of several neurodegenerative diseases as well as aging because of the accumulation of ROS. Gnaq is a member of G protein α subunits. It has been reported that the expression level of Gnaq in the mouse forebrain cortex was significantly decreased with age in our previous study; therefore, we supposed that Gnaq contributes to attenuate the OS. In this study, we generated a Gnaq-overexpression cell using gene recombinant technique and lentivirus transfection technique in a neuron-like PC12 cell, and investigated whether Gnaq had antioxidant effects in PC12 cells treated with H2O2. The viability of cells, concentration of ROS, Nrf2 nuclear translocation, expression of antioxidant enzymes, activation of NF-κB and apoptosis were compared between Gnaq-PC12 cells and Vector-PC12 cells. Results showed that, compared with Vector-PC12 cells, the antioxidative ability of Gnaq-PC12 cells was significantly improved, while the ROS level in Gnaq-PC12 cells was significantly decreased. Nrf2 nuclear translocation was up-regulated and NF-κB nuclear translocation was down-regulated in Gnaq-PC12 cells after H2O2 treatment. The results suggest that Gnaq plays a crucial role in neuroprotection in PC12 cells. A possible mechanism for this would be that the overexpressed Gnaq enhances the antioxidative effect mediated by Nrf2 signal pathway and inhibits the cellular damaging effect through NF-κB signal pathway.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Apoptose , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Células PC12 , Transporte Proteico , Ratos , Espécies Reativas de Oxigênio , Proteínas Recombinantes/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais
7.
Neural Regen Res ; 8(5): 397-403, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206680

RESUMO

Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time < 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time > 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA