Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176651

RESUMO

The glycosylation of proteins and lipids is known to be closely related to the mechanisms of various diseases such as influenza, cancer, and muscular dystrophy. Therefore, it has become clear that the analysis of post-translational modifications of proteins, including glycosylation, is important to accurately understand the functions of each protein molecule and the interactions among them. In order to conduct large-scale analyses more efficiently, it is essential to promote the accumulation, sharing, and reuse of experimental and analytical data in accordance with the FAIR (Findability, Accessibility, Interoperability, and Re-usability) data principles. However, a FAIR data repository for storing and sharing glycoconjugate information, including glycopeptides and glycoproteins, in a standardized format did not exist. Therefore, we have developed GlyComb (https://glycomb.glycosmos.org) as a new standardized data repository for glycoconjugate data. Currently, GlyComb can assign a unique identifier to a set of glycosylation information associated with a specific peptide sequence or UniProt ID. By standardizing glycoconjugate data via GlyComb identifiers and coordinating with existing web resources such as GlyTouCan and GlycoPOST, a comprehensive system for data submission and data sharing among researchers can be established. Here we introduce how GlyComb is able to integrate the variety of glycoconjugate data already registered in existing data repositories to obtain a better understanding of the available glycopeptides and glycoproteins, and their glycosylation patterns. We also explain how this system can serve as a foundation for a better understanding of glycan function.


Assuntos
Bases de Dados de Compostos Químicos , Glicômica , Proteômica , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo , Bases de Dados Genéticas
2.
Sci Rep ; 14(1): 489, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177192

RESUMO

N-glycosylation is an abundant post-translational modification of most cell-surface proteins. N-glycans play a crucial role in cellular functions like protein folding, protein localization, cell-cell signaling, and immune detection. As different tissue types display different N-glycan profiles, changes in N-glycan compositions occur in tissue-specific ways with development of disease, like cancer. However, no comparative atlas resource exists for documenting N-glycome alterations across various human tissue types, particularly comparing normal and cancerous tissues. In order to study a broad range of human tissue N-glycomes, N-glycan targeted MALDI imaging mass spectrometry was applied to custom formalin-fixed paraffin-embedded tissue microarrays. These encompassed fifteen human tissue types including bladder, breast, cervix, colon, esophagus, gastric, kidney, liver, lung, pancreas, prostate, sarcoma, skin, thyroid, and uterus. Each array contained both normal and tumor cores from the same pathology block, selected by a pathologist, allowing more in-depth comparisons of the N-glycome differences between tumor and normal and across tissue types. Using established MALDI-IMS workflows and existing N-glycan databases, the N-glycans present in each tissue core were spatially profiled and peak intensity data compiled for comparative analyses. Further structural information was determined for core fucosylation using endoglycosidase F3, and differentiation of sialic acid linkages through stabilization chemistry. Glycan structural differences across the tissue types were compared for oligomannose levels, branching complexity, presence of bisecting N-acetylglucosamine, fucosylation, and sialylation. Collectively, our research identified the N-glycans that were significantly increased and/or decreased in relative abundance in cancer for each tissue type. This study offers valuable information on a wide scale for both normal and cancerous tissues, serving as a reference for future studies and potential diagnostic applications of MALDI-IMS.


Assuntos
Processamento de Proteína Pós-Traducional , Sarcoma , Masculino , Feminino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glicosilação , Polissacarídeos/metabolismo
3.
Dev Cell ; 56(8): 1195-1209.e7, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33730547

RESUMO

Glycans are one of the fundamental classes of macromolecules and are involved in a broad range of biological phenomena. A large variety of glycan structures can be synthesized depending on tissue or cell types and environmental changes. Here, we developed a comprehensive glycosylation mapping tool, termed GlycoMaple, to visualize and estimate glycan structures based on gene expression. We informatically selected 950 genes involved in glycosylation and its regulation. Expression profiles of these genes were mapped onto global glycan metabolic pathways to predict glycan structures, which were confirmed using glycomic analyses. Based on the predictions of N-glycan processing, we constructed 40 knockout HEK293 cell lines and analyzed the effects of gene knockout on glycan structures. Finally, the glycan structures of 64 cell lines, 37 tissues, and primary colon tumor tissues were estimated and compared using publicly available databases. Our systematic approach can accelerate glycan analyses and engineering in mammalian cells.


Assuntos
Redes e Vias Metabólicas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Glicômica , Glicosilação , Células HEK293 , Humanos , Redes e Vias Metabólicas/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Reprodutibilidade dos Testes
4.
IET Syst Biol ; 8(4): 162-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25075529

RESUMO

Pancreatic cancer is a devastating disease and predicting the status of the patients becomes an important and urgent issue. The authors explore the applicability of inductive logic programming (ILP) method in the disease and show that the accumulated clinical laboratory data can be used to predict disease characteristics, and this will contribute to the selection of therapeutic modalities of pancreatic cancer. The availability of a large amount of clinical laboratory data provides clues to aid in the knowledge discovery of diseases. In predicting the differentiation of tumour and the status of lymph node metastasis in pancreatic cancer, using the ILP model, three rules are developed that are consistent with descriptions in the literature. The rules that are identified are useful to detect the differentiation of tumour and the status of lymph node metastasis in pancreatic cancer and therefore contributed significantly to the decision of therapeutic strategies. In addition, the proposed method is compared with the other typical classification techniques and the results further confirm the superiority and merit of the proposed method.


Assuntos
Inteligência Artificial , Biomarcadores Tumorais/sangue , Sistemas de Apoio a Decisões Clínicas , Diagnóstico por Computador/métodos , Modelos Logísticos , Neoplasias Pancreáticas/diagnóstico , Simulação por Computador , Técnicas de Apoio para a Decisão , Humanos , Metástase Linfática , Neoplasias Pancreáticas/sangue , Reprodutibilidade dos Testes , Medição de Risco/métodos , Sensibilidade e Especificidade
5.
Bioinformatics ; 22(13): 1648-55, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16613909

RESUMO

MOTIVATION: Various computational methods have been proposed to tackle the problem of predicting the peptide binding ability for a specific MHC molecule. These methods are based on known binding peptide sequences. However, current available peptide databases do not have very abundant amounts of examples and are highly redundant. Existing studies show that MHC molecules can be classified into supertypes in terms of peptide-binding specificities. Therefore, we first give a method for reducing the redundancy in a given dataset based on information entropy, then present a novel approach for prediction by learning a predictive model from a dataset of binders for not only the molecule of interest but also for other MHC molecules. RESULTS: We experimented on the HLA-A family with the binding nonamers of A1 supertype (HLA-A*0101, A*2601, A*2902, A*3002), A2 supertype (A*0201, A*0202, A*0203, A*0206, A*6802), A3 supertype (A*0301, A*1101, A*3101, A*3301, A*6801) and A24 supertype (A*2301 and A*2402), whose data were collected from six publicly available peptide databases and two private sources. The results show that our approach significantly improves the prediction accuracy of peptides that bind a specific HLA molecule when we combine binding data of HLA molecules in the same supertype. Our approach can thus be used to help find new binders for MHC molecules.


Assuntos
Biologia Computacional/métodos , Genes MHC Classe I , Antígenos HLA-A/genética , Antígenos de Histocompatibilidade/química , Oligopeptídeos/química , Peptídeos/química , Algoritmos , Alelos , Bases de Dados Genéticas , Entropia , Humanos , Modelos Estatísticos , Ligação Proteica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA