Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(7): 1179-1194.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437544

RESUMO

Emerging new evidence highlights the importance of prolonged daily fasting periods for the health and survival benefits of calorie restriction (CR) and time-restricted feeding (TRF) in male mice; however, little is known about the impact of these feeding regimens in females. We placed 14-month-old female mice on five different dietary regimens, either CR or TRF with different feeding windows, and determined the effects of these regimens on physiological responses, progression of neoplasms and inflammatory diseases, serum metabolite levels, and lifespan. Compared with TRF feeding, CR elicited a robust systemic response, as it relates to energetics and healthspan metrics, a unique serum metabolomics signature in overnight fasted animals, and was associated with an increase in lifespan. These results indicate that daytime (rest-phase) feeding with prolonged fasting periods initiated late in life confer greater benefits when combined with imposed lower energy intake.


Assuntos
Restrição Calórica , Jejum , Feminino , Masculino , Animais , Camundongos , Ingestão de Energia , Jejum Intermitente , Longevidade
3.
Function (Oxf) ; 3(2): zqab065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35229078

RESUMO

ATP synthase (F1Fo) synthesizes daily our body's weight in ATP, whose production-rate can be transiently increased several-fold to meet changes in energy utilization. Using purified mammalian F1Fo-reconstituted proteoliposomes and isolated mitochondria, we show F1Fo can utilize both ΔΨm-driven H+- and K+-transport to synthesize ATP under physiological pH = 7.2 and K+ = 140 mEq/L conditions. Purely K+-driven ATP synthesis from single F1Fo molecules measured by bioluminescence photon detection could be directly demonstrated along with simultaneous measurements of unitary K+ currents by voltage clamp, both blocked by specific Fo inhibitors. In the presence of K+, compared to osmotically-matched conditions in which this cation is absent, isolated mitochondria display 3.5-fold higher rates of ATP synthesis, at the expense of 2.6-fold higher rates of oxygen consumption, these fluxes being driven by a 2.7:1 K+: H+ stoichiometry. The excellent agreement between the functional data obtained from purified F1Fo single molecule experiments and ATP synthase studied in the intact mitochondrion under unaltered OxPhos coupling by K+ presence, is entirely consistent with K+ transport through the ATP synthase driving the observed increase in ATP synthesis. Thus, both K+ (harnessing ΔΨm) and H+ (harnessing its chemical potential energy, ΔµH) drive ATP generation during normal physiology.


Assuntos
Trifosfato de Adenosina , ATPases Mitocondriais Próton-Translocadoras , Animais , ATPases Mitocondriais Próton-Translocadoras/química , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Mamíferos/metabolismo
4.
Function (Oxf) ; 3(2): zqac001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187492

RESUMO

We demonstrated that ATP synthase serves the functions of a primary mitochondrial K+ "uniporter," i.e., the primary way for K+ to enter mitochondria. This K+ entry is proportional to ATP synthesis, regulating matrix volume and energy supply-vs-demand matching. We show that ATP synthase can be upregulated by endogenous survival-related proteins via IF1. We identified a conserved BH3-like domain of IF1 which overlaps its "minimal inhibitory domain" that binds to the ß-subunit of F1. Bcl-xL and Mcl-1 possess a BH3-binding-groove that can engage IF1 and exert effects, requiring this interaction, comparable to diazoxide to augment ATP synthase's H+ and K+ flux and ATP synthesis. Bcl-xL and Mcl-1, but not Bcl-2, serve as endogenous regulatory ligands of ATP synthase via interaction with IF1 at this BH3-like domain, to increase its chemo-mechanical efficiency, enabling its function as the recruitable mitochondrial KATP-channel that can limit ischemia-reperfusion injury. Using Bayesian phylogenetic analysis to examine potential bacterial IF1-progenitors, we found that IF1 is likely an ancient (∼2 Gya) Bcl-family member that evolved from primordial bacteria resident in eukaryotes, corresponding to their putative emergence as symbiotic mitochondria, and functioning to prevent their parasitic ATP consumption inside the host cell.


Assuntos
Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Teorema de Bayes , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Filogenia , ATPases Mitocondriais Próton-Translocadoras/genética , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
5.
J Mol Cell Cardiol ; 165: 9-18, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954465

RESUMO

ATP synthase (F1Fo) is a rotary molecular engine that harnesses energy from electrochemical-gradients across the inner mitochondrial membrane for ATP synthesis. Despite the accepted tenet that F1Fo transports exclusively H+, our laboratory has demonstrated that, in addition to H+, F1Fo ATP synthase transports a significant fraction of ΔΨm-driven charge as K+ to synthesize ATP. Herein, we utilize a computational modeling approach as a proof of principle of the feasibility of the core mechanism underlying the enhanced ATP synthesis, and to explore its bioenergetic consequences. A minimal model comprising the 'core' mechanism constituted by ATP synthase, driven by both proton (PMF) and potassium motive force (KMF), respiratory chain, adenine nucleotide translocator, Pi carrier, and K+/H+ exchanger (KHEmito) was able to simulate enhanced ATP synthesis and respiratory fluxes determined experimentally with isolated heart mitochondria. This capacity of F1Fo ATP synthase confers mitochondria with a significant energetic advantage compared to K+ transport through a channel not linked to oxidative phosphorylation (OxPhos). The K+-cycling mechanism requires a KHEmito that exchanges matrix K+ for intermembrane space H+, leaving PMF as the overall driving energy of OxPhos, in full agreement with the standard chemiosmotic mechanism. Experimental data of state 4➔3 energetic transitions, mimicking low to high energy demand, could be reproduced by an integrated computational model of mitochondrial function that incorporates the 'core' mechanism. Model simulations display similar behavior compared to the experimentally observed changes in ΔΨm, mitochondrial K+ uptake, matrix volume, respiration, and ATP synthesis during the energetic transitions at physiological pH and K+ concentration. The model also explores the role played by KHEmito in modulating the energetic performance of mitochondria. The results obtained support the available experimental evidence on ATP synthesis driven by K+ and H+ transport through the F1Fo ATP synthase.


Assuntos
Membranas Mitocondriais , Potássio/metabolismo , Prótons , Trifosfato de Adenosina , Simulação por Computador , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo
6.
J Pharm Biomed Anal ; 198: 113996, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690096

RESUMO

Human integral membrane protein 2B (ITM2B or Bri2) is a member of the BRICHOS family, proteins that efficiently prevent Aß42 aggregation via a unique mechanism. The identification of novel Bri2 BRICHOS client proteins could help elucidate signaling pathways and determine novel targets to prevent or cure amyloid diseases. To identify Bri2 BRICHOS interacting partners, we carried out a 'protein fishing' experiment using recombinant human (rh) Bri2 BRICHOS-coated magnetic particles, which exhibit essentially identical ability to inhibit Aß42 fibril formation as free rh Bri2 BRICHOS, in combination with proteomic analysis on homogenates of SH-SY5Y cells. We identified 70 proteins that had more significant interactions with rh Bri2 BRICHOS relative to the corresponding control particles. Three previously identified Bri2 BRICHOS interacting proteins were also identified in our 'fishing' experiments. The binding affinity of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the top 'hit', was calculated and was identified as a strong interacting partner. Enrichment analysis of the retained proteins identified three biological pathways: Rho GTPase, heat stress response and pyruvate, cysteine and methionine metabolism.


Assuntos
Peptídeos beta-Amiloides , Proteínas de Transporte , Proteínas Adaptadoras de Transdução de Sinal , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Fenômenos Magnéticos , Ligação Proteica , Proteômica
7.
Cell Metab ; 32(2): 203-214.e4, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413333

RESUMO

Obesity is a top public health concern, and a molecule that safely treats obesity is urgently needed. Disulfiram (known commercially as Antabuse), an FDA-approved treatment for chronic alcohol addiction, exhibits anti-inflammatory properties and helps protect against certain types of cancer. Here, we show that in mice disulfiram treatment prevented body weight gain and abrogated the adverse impact of an obesogenic diet on insulin responsiveness while mitigating liver steatosis and pancreatic islet hypertrophy. Additionally, disulfiram treatment reversed established diet-induced obesity and metabolic dysfunctions in middle-aged mice. Reductions in feeding efficiency and increases in energy expenditure were associated with body weight regulation in response to long-term disulfiram treatment. Loss of fat tissue and an increase in liver fenestrations were also observed in rats on disulfiram. Given the potent anti-obesogenic effects in rodents, repurposing disulfiram in the clinic could represent a new strategy to treat obesity and its metabolic comorbidities.


Assuntos
Fármacos Antiobesidade/farmacologia , Peso Corporal/efeitos dos fármacos , Dissulfiram/farmacologia , Obesidade/tratamento farmacológico , Animais , Dieta/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Aging Cell ; 17(4): e12767, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29706024

RESUMO

Calorie restriction (CR) is one of the most robust means to improve health and survival in model organisms. CR imposes a metabolic program that leads to increased stress resistance and delayed onset of chronic diseases, including cancer. In rodents, CR induces the upregulation of two NADH-dehydrogenases, namely NAD(P)H:quinone oxidoreductase 1 (Nqo1) and cytochrome b5 reductase 3 (Cyb5r3), which provide electrons for energy metabolism. It has been proposed that this upregulation may be responsible for some of the beneficial effects of CR, and defects in their activity are linked to aging and several age-associated diseases. However, it is unclear whether changes in metabolic homeostasis solely through upregulation of these NADH-dehydrogenases have a positive impact on health and survival. We generated a mouse that overexpresses both metabolic enzymes leading to phenotypes that resemble aspects of CR including a modest increase in lifespan, greater physical performance, a decrease in chronic inflammation, and, importantly, protection against carcinogenesis, one of the main hallmarks of CR. Furthermore, these animals showed an enhancement of metabolic flexibility and a significant upregulation of the NAD+ /sirtuin pathway. The results highlight the importance of these NAD+ producers for the promotion of health and extended lifespan.


Assuntos
Restrição Calórica , Citocromo-B(5) Redutase/genética , Regulação Enzimológica da Expressão Gênica , NAD(P)H Desidrogenase (Quinona)/genética , Animais , Citocromo-B(5) Redutase/metabolismo , Metabolismo Energético , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos
9.
Adv Exp Med Biol ; 982: 1-24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551779

RESUMO

The spatio-temporal organization of mitochondria in cardiac myocytes facilitates myocyte-wide, cluster-bound, mitochondrial inner membrane potential oscillatory depolarizations, commonly triggered by metabolic or oxidative stressors. Local intermitochondrial coupling can be mediated by reactive oxygen species (ROS) that activate inner membrane pores to initiate a ROS-induced-ROS-release process that produces synchronized limit cycle oscillations of mitochondrial clusters within the whole mitochondrial network. The network's dynamic organization, structure and function can be assessed by quantifying dynamic local coupling constants and dynamic functional clustering coefficients, both providing information about the network's response to external stimuli. In addition to its special organization, the mitochondrial network of cardiac myocytes exhibits substrate-sensitive coupling constants and clustering coefficients. The myocyte's ability to form functional clusters of synchronously oscillating mitochondria is sensitive to conditions such as substrate availability (e.g., glucose, pyruvate, ß-hydroxybutyrate), antioxidant status, respiratory chain activity, or history of oxidative challenge (e.g., ischemia-reperfusion). This underscores the relevance of quantitative methods to characterize the network's functional status as a way to assess the myocyte's resilience to pathological stressors.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Humanos , Dinâmica Mitocondrial , Modelos Cardiovasculares , Periodicidade , Processos Estocásticos , Fatores de Tempo
10.
JACC Basic Transl Sci ; 2(5): 543-560, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29520378

RESUMO

Adult stem cells demonstrate metabolic flexibility that is regulated by cell adhesion status. The authors demonstrate that adherent cells primarily utilize glycolysis, whereas suspended cells rely on oxidative phosphorylation for their ATP needs. Akt phosphorylation transduces adhesion-mediated regulation of energy metabolism, by regulating translocation of glucose transporters (GLUT1) to the cell membrane and thus, cellular glucose uptake and glycolysis. Cell dissociation, a pre-requisite for cell transplantation, leads to energetic stress, which is mediated by Akt dephosphorylation, downregulation of glucose uptake, and glycolysis. They designed hydrogels that promote rapid cell adhesion of encapsulated cells, Akt phosphorylation, restore glycolysis, and cellular ATP levels.

11.
Artigo em Inglês | MEDLINE | ID: mdl-27599643

RESUMO

Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O2 and CO2 levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.


Assuntos
Metaboloma , Modelos Biológicos , Animais , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biologia de Sistemas/métodos , Análise de Ondaletas
12.
Sci Rep ; 6: 23251, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27000952

RESUMO

Redox switches are important mediators in neoplastic, cardiovascular and neurological disorders. We recently identified spontaneous redox signals in neurons at the single mitochondrion level where transients of glutathione oxidation go along with shortening and re-elongation of the organelle. We now have developed advanced image and signal-processing methods to re-assess and extend previously obtained data. Here we analyze redox and pH signals of entire mitochondrial populations. In total, we quantified the effects of 628 redox and pH events in 1797 mitochondria from intercostal axons and neuromuscular synapses using optical sensors (mito-Grx1-roGFP2; mito-SypHer). We show that neuronal mitochondria can undergo multiple redox cycles exhibiting markedly different signal characteristics compared to single redox events. Redox and pH events occur more often in mitochondrial clusters (medium cluster size: 34.1 ± 4.8 µm(2)). Local clusters possess higher mitochondrial densities than the rest of the axon, suggesting morphological and functional inter-mitochondrial coupling. We find that cluster formation is redox sensitive and can be blocked by the antioxidant MitoQ. In a nerve crush paradigm, mitochondrial clusters form sequentially adjacent to the lesion site and oxidation spreads between mitochondria. Our methodology combines optical bioenergetics and advanced signal processing and allows quantitative assessment of entire mitochondrial populations.


Assuntos
Axônios/metabolismo , Mitocôndrias/metabolismo , Organelas/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Concentração de Íons de Hidrogênio , Camundongos , Oxirredução
13.
Am J Physiol Heart Circ Physiol ; 309(8): H1271-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254336

RESUMO

Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.


Assuntos
Antineoplásicos/toxicidade , Antioxidantes/metabolismo , Doxorrubicina/toxicidade , Glutationa Peroxidase/metabolismo , Cardiopatias/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-2/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Glutationa Redutase/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/genética , Cardiopatias/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Ratos , Receptor ErbB-2/genética , Glutationa Peroxidase GPX1
14.
Biophys J ; 108(1): 163-72, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564863

RESUMO

We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.


Assuntos
Simulação por Computador , Glucose/metabolismo , Metaboloma/fisiologia , Modelos Biológicos , Miocárdio/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Glicogenólise , Glicólise , Cinética , Modelos Lineares , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NAD/metabolismo , NADP/metabolismo , Via de Pentose Fosfato , Polímeros/metabolismo , Técnicas de Cultura de Tecidos
15.
Am J Physiol Heart Circ Physiol ; 308(4): H291-302, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25485897

RESUMO

Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Estresse Oxidativo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Glutationa/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insulina/sangue , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Consumo de Oxigênio , Palmitatos/sangue , Palmitatos/farmacologia , Ratos , Ratos Zucker , Tiorredoxinas/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 304(7): H916-26, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376824

RESUMO

Chronic hyperglycemia in type-1 diabetes mellitus is associated with oxidative stress (OS) and sudden death. Mechanistic links remain unclear. We investigated changes in electrophysiological (EP) properties in a model of chronic hyperglycemia before and after challenge with OS by GSH oxidation and tested reversibility of EP remodeling by insulin. Guinea pigs survived for 1 mo following streptozotocin (STZ) or saline (sham) injection. A treatment group received daily insulin for 2 wk to reverse STZ-induced hyperglycemia (STZ + Ins). EP properties were measured using high-resolution optical action potential mapping before and after challenge of hearts with diamide. Despite elevation of glucose levels in STZ compared with sham-operated (P = 0.004) and STZ + Ins (P = 0.002) animals, average action potential duration (APD) and arrhythmia propensity were not altered at baseline. Diamide promoted early (<10 min) formation of arrhythmic triggers reflected by a higher arrhythmia scoring index in STZ (P = 0.045) and STZ + Ins (P = 0.033) hearts compared with sham-operated hearts. APD heterogeneity underwent a more pronounced increase in response to diamide in STZ and STZ + Ins hearts compared with sham-operated hearts. Within 30 min, diamide resulted in spontaneous incidence of ventricular tachycardia and ventricular fibrillation (VT/VF) in 3/6, 2/5, 1/5, and 0/4 STZ, STZ + Ins, sham-operated, and normal hearts, respectively. Hearts prone to VT/VF exhibited greater APD heterogeneity (P = 0.010) compared with their VT/VF-free counterparts. Finally, altered EP properties in STZ were not rescued by insulin. In conclusion, GSH oxidation enhances APD heterogeneity and increases arrhythmia scoring index in a guinea pig model of chronic hyperglycemia. Despite normalization of glycemic levels by insulin, these proarrhythmic properties are not reversed, suggesting the importance of targeting antioxidant defenses for arrhythmia suppression.


Assuntos
Glutationa/metabolismo , Hiperglicemia/complicações , Estresse Oxidativo , Taquicardia Ventricular/metabolismo , Fibrilação Ventricular/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Glicemia/metabolismo , Diamida/farmacologia , Cobaias , Coração/fisiopatologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Insulina/farmacologia , Oxirredução , Pontuação de Propensão , Estreptozocina/farmacologia , Taquicardia Ventricular/etiologia , Fibrilação Ventricular/etiologia , Remodelação Ventricular/efeitos dos fármacos
17.
Biophys J ; 104(2): 332-43, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23442855

RESUMO

To understand the mechanisms involved in the control and regulation of mitochondrial reactive oxygen species (ROS) levels, a two-compartment computational mitochondrial energetic-redox (ME-R) model accounting for energetic, redox, and ROS metabolisms is presented. The ME-R model incorporates four main redox couples (NADH/NAD(+), NADPH/NADP(+), GSH/GSSG, Trx(SH)(2)/TrxSS). Scavenging systems-glutathione, thioredoxin, superoxide dismutase, catalase-are distributed in mitochondrial matrix and extra-matrix compartments, and transport between compartments of ROS species (superoxide: O(2)(⋅-), hydrogen peroxide: H(2)O(2)), and GSH is also taken into account. Model simulations are compared with experimental data obtained from isolated heart mitochondria. The ME-R model is able to simulate: i), the shape and order of magnitude of H(2)O(2) emission and dose-response kinetics observed after treatment with inhibitors of the GSH or Trx scavenging systems and ii), steady and transient behavior of ΔΨ(m) and NADH after single or repetitive pulses of substrate- or uncoupler-elicited energetic-redox transitions. The dynamics of the redox environment in both compartments is analyzed with the model following substrate addition. The ME-R model represents a useful computational tool for exploring ROS dynamics, the role of compartmentation in the modulation of the redox environment, and how redox regulation participates in the control of mitochondrial function.


Assuntos
Compartimento Celular , Metabolismo Energético , Redes e Vias Metabólicas , Mitocôndrias Cardíacas/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Respiração Celular , Simulação por Computador , Glutationa/metabolismo , Cobaias , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , NAD/metabolismo , Oxirredução , Reprodutibilidade dos Testes , Especificidade por Substrato , Tiorredoxinas/metabolismo , Fatores de Tempo
18.
Int J Biochem Cell Biol ; 44(12): 2106-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22939972

RESUMO

Previously we reported that the sesquiterpene lactone parthenolide induces oxidative stress in cardiac myocytes, which blocks Janus kinase (JAK) activation by the interleukin 6 (IL-6)-type cytokines. One implication suggested by this finding is that IL-6 signaling is dependent upon cellular anti-oxidant defenses or redox status. Therefore, the present study was undertaken to directly test the hypothesis that JAK1 signaling by the IL-6-type cytokines in cardiac myocytes is impaired by glutathione (GSH) depletion, since this tripeptide is one of the major anti-oxidant molecules and redox-buffers in cells. Cardiac myocytes were pretreated for 6h with l-buthionine-sulfoximine (BSO) to inhibit GSH synthesis. After 24h, cells were dosed with the IL-6-like cytokine, leukemia inhibitory factor (LIF). BSO treatment decreased GSH levels and dose-dependently attenuated activation of JAK1, Signal Transducer and Activator of Transcription 3 (STAT3), and extracellular signal regulated kinases 1 and 2 (ERK1/2). Addition of glutathione monoethyl ester, which is cleaved intracellularly to GSH, prevented attenuation of LIF-induced JAK1 and STAT3 activation, as did the reductant N-acetyl-cysteine. Unexpectedly, LIF-induced STAT1 activation was unaffected by GSH depletion. Evidence was found that STAT3 is more resistant than STAT1 to intermolecular disulfide bond formation under oxidizing conditions and more likely to retain the monomeric form, suggesting that conformational differences explain the differential effect of GSH depletion on STAT1 and STAT3. Overall, our findings indicate that activation of both JAK1 and STAT3 is redox-sensitive and the character of IL-6 type cytokine signaling in cardiac myocytes is sensitive to changes in the cellular redox status. In cardiac myocytes, activation of STAT1 may be favored over STAT3 under oxidizing conditions due to GSH depletion and/or augmented reactive oxygen species production, such as in ischemia-reperfusion and heart failure.


Assuntos
Glutationa/metabolismo , Janus Quinase 1/metabolismo , Fator Inibidor de Leucemia/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Transcrição STAT3/metabolismo , Acetilcisteína/farmacologia , Animais , Butionina Sulfoximina/farmacologia , Células Cultivadas , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Glutationa/fisiologia , Fator Inibidor de Leucemia/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT1/metabolismo
19.
Diabetes ; 61(12): 3094-105, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22807033

RESUMO

In type 2 diabetes, hyperglycemia and increased sympathetic drive may alter mitochondria energetic/redox properties, decreasing the organelle's functionality. These perturbations may prompt or sustain basal low-cardiac performance and limited exercise capacity. Yet the precise steps involved in this mitochondrial failure remain elusive. Here, we have identified dysfunctional mitochondrial respiration with substrates of complex I, II, and IV and lowered thioredoxin-2/glutathione (GSH) pools as the main processes accounting for impaired state 4→3 energetic transition shown by mitochondria from hearts of type 2 diabetic db/db mice upon challenge with high glucose (HG) and the ß-agonist isoproterenol (ISO). By mimicking clinically relevant conditions in type 2 diabetic patients, this regimen triggers a major overflow of reactive oxygen species (ROS) from mitochondria that directly perturbs cardiac electro-contraction coupling, ultimately leading to heart dysfunction. Exogenous GSH or, even more so, the fatty acid palmitate rescues basal and ß-stimulated function in db/db myocyte/heart preparations exposed to HG/ISO. This occurs because both interventions provide the reducing equivalents necessary to counter mitochondrial ROS outburst and energetic failure. Thus, in the presence of poor glycemic control, the diabetic patient's inability to cope with increased cardiac work demand largely stems from mitochondrial redox/energetic disarrangements that mutually influence each other, leading to myocyte or whole-heart mechanical dysfunction.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glutationa/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Palmitatos/farmacologia , Animais , Glucose/farmacologia , Isoproterenol/farmacologia , Camundongos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
20.
J Biol Chem ; 286(38): 33669-77, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21832082

RESUMO

Respiring mitochondria produce H(2)O(2) continuously. When production exceeds scavenging, H(2)O(2) emission occurs, endangering cell functions. The mitochondrial peroxidase peroxiredoxin-3 reduces H(2)O(2) to water using reducing equivalents from NADPH supplied by thioredoxin-2 (Trx2) and, ultimately, thioredoxin reductase-2 (TrxR2). Here, the contribution of this mitochondrial thioredoxin system to the control of H(2)O(2) emission was studied in isolated mitochondria and cardiomyocytes from mouse or guinea pig heart. Energization of mitochondria by the addition of glutamate/malate resulted in a 10-fold decrease in the ratio of oxidized to reduced Trx2. This shift in redox state was accompanied by an increase in NAD(P)H and was dependent on TrxR2 activity. Inhibition of TrxR2 in isolated mitochondria by auranofin resulted in increased H(2)O(2) emission, an effect that was seen under both forward and reverse electron transport. This effect was independent of changes in NAD(P)H or membrane potential. The effects of auranofin were reproduced in cardiomyocytes; superoxide and H(2)O(2) levels increased, but similarly, there was no effect on NAD(P)H or membrane potential. These data show that energization of mitochondria increases the antioxidant potential of the TrxR2/Trx2 system and that inhibition of TrxR2 results in increased H(2)O(2) emission through a mechanism that is independent of changes in other redox couples.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/enzimologia , Tiorredoxina Redutase 2/metabolismo , Animais , Auranofina/farmacologia , Dinitroclorobenzeno/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ensaios Enzimáticos , Glutationa/metabolismo , Cobaias , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução/efeitos dos fármacos , Peroxirredoxina III/metabolismo , Tiorredoxina Redutase 2/antagonistas & inibidores , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA