Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955929

RESUMO

In this study, an efficient multistep synthesis of novel aromatic tricyclic hybrids incorporating different biological active moieties, such as 1,3,4-thiadiazole and 1,2,4-triazole, was reported. These target scaffolds are characterized by having terminal lipophilic or hydrophilic parts, and their structures are confirmed by different spectroscopic methods. Further, the cytotoxic activities of the newly synthesized compounds were evaluated using in vitro MTT cytotoxicity screening assay against three different cell lines, including HepG-2, MCF-7, and HCT-116, compared with the reference drug Taxol. The results showed variable performance against cancer cell lines, exhibiting MCF-7 and HepG-2 selectivities by active analogs. Among these derivatives, 1,2,4-triazoles 11 and 13 and 1,3,4-thiadiazole 18 were found to be the most potent compounds against MCF-7 and HepG-2 cancer cells. Moreover, structure-activity relationship (SAR) studies led to the identification of some potent LSD1 inhibitors. The tested compounds showed good LSD1 inhibitory activities, with an IC50 range of 0.04-1.5 µM. Compounds 27, 23, and 22 were found to be the most active analogs with IC50 values of 0.046, 0.065, and 0.074 µM, respectively. In addition, they exhibited prominent selectivity against a MAO target with apparent cancer cell apoptosis, resulting in DNA fragmentation. This research provides some new aromatic-centered 1,2,4-triazole-3-thione and 1,3,4-thiadiazole analogs as highly effective anticancer agents with good LSD1 target selectivity.


Assuntos
Antineoplásicos , Histona Desmetilases , Antineoplásicos/química , Benzeno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desmetilases/metabolismo , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis , Triazóis/química
2.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638826

RESUMO

Novel dicationic pyridinium ionic liquids tethering amphiphilic long alkyl side chains and fluorinated counter anions have been successfully synthesized by means of the quaternization of the dipyridinium hydrazone through its alkylation with different alkyl halides. The resulting halogenated di-ionic liquids underwent a metathesis reaction in order to incorporate some fluorinated counter anions in their structures. The structures of all the resulting di-ionic liquids were characterized by several spectroscopic experiments. The antitumorigenic activities of the investigated compounds were further studied against three different human lung cancer cell lines. Compared to the standard chemotherapeutic agent, cisplatin, the synthesized di-ionic liquids exerted equal, even more active, moderate, or weak anticancer activities against the various lung cancer cell lines under investigation. The observed anticancer activity appears to be enhanced by increasing the length of the aliphatic side chains. Moreover, dicationic pyridinium bearing a nine carbon chain as counter cation and hexafluoro phosphate and/or tetrafluoro bororate as counter anion were selected for further evaluation and demonstrated effective and significant antimetastatic effects and suppressed the colonization ability of the lung cancer cells, suggesting a therapeutic potential for the synthesized compounds in lung cancer treatment.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Piridínio , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Hidrazonas/química , Líquidos Iônicos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia
3.
Bioorg Chem ; 111: 104835, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798850

RESUMO

This study reports an efficient and convenient click chemistry synthesis of a novel series of phthalimide scaffold linked to 1,2,3 triazole ring and terminal lipophilic fragments. Structures of newly synthesized compounds were well characterized by different spectroscopic tools. In vitro MTT cytotoxicity assay was performed comparing the cytotoxic effects of newly synthesized compounds to staurosporine using three different types: human liver cancer cell line (HepG2), Michigan cancer foundation-7 (MCF-7) and human colorectal carcinoma cell line (HCT116). The initial screening showed excellent to moderate anticancer activity for these newly synthesized compounds with high degree of cell line selectivity with micromolar (µM) half maximal inhibitory concentration (IC50) values against tumor cells. The SAR analysis of these derivatives confirmed the role of molecular fragments including phthalimide, linker, triazole, and terminal tails in correlation to activity. In addition, enzymatic inhibitory assay against wild type EGFR was performed for the most active compounds to get more details about their mechanism of action. In order to further explore their binding affinities, molecular docking simulation was studied against EGFR site. The results obtained from molecular docking study and those obtained from cytotoxic screening were correlated. One of the most prominent analogs is (6f) with terminal disubstituted ring and amide linker showed selective MCF-7 cytotoxicity profile with IC50 0.22 µM and 79 nM to EGFR target. Extensive structure activity relationship (SAR) analyses were also carried out. The pharmacokinetic profile of (6f) was studied showing good metabolic stability and long duration behavior. This design offered a potent selective anticancer phthalimide-triazole leads for further optimization in cancer drug discovery.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Ftalimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Estrutura Molecular , Ftalimidas/química , Ftalimidas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/metabolismo
4.
Molecules ; 23(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373247

RESUMO

A library of novel regioselective 1,4-di and 1,4,5-trisubstituted-1,2,3-triazole based benzothiazole-piperazine conjugates were designed and synthesized using the click synthesis approach in the presence and absence of the Cu(I) catalyst. Some of these 1,2,3-triazole hybrids possess in their structures different heterocyclic scaffold including 1,2,4-triazole, benzothiazole, isatin and/or benzimidazole. The newly designed 1,2,3-triazole hybrids were assessed for their antiproliferative inhibition potency against four selected human cancer cell lines (MCF7, T47D, HCT116 and Caco2). The majority of the synthesized compounds demonstrated moderate to potent activity against all the cancer cell lines examined. Further, we have established a structure activity relationship with respect to the in silico analysis of ADME (adsorption, distribution, metabolism and excretion) analysis and found good agreement with in vitro activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzotiazóis/química , Técnicas de Química Sintética , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Piperazina/química , Triazóis/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 17(5)2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27213367

RESUMO

The present work reports an efficient synthesis of fluorinated pyridinium salts-based hydrazones under both conventional and eco-friendly ultrasound procedures. The synthetic approach first involves the preparation of halogenated pyridinium salts through the condensation of isonicotinic acid hydrazide (1) with p-fluorobenzaldehyde (2) followed by the nucleophilic alkylation of the resulting N-(4-fluorobenzylidene)isonicotinohydrazide (3) with a different alkyl iodide. The iodide counteranion of 5-10 was subjected to an anion exchange metathesis reaction in the presence of an excess of the appropriate metal salts to afford a new series of fluorinated pyridinium salts tethering a hydrazone linkage 11-40. Ultrasound irradiation led to higher yields in considerably less time than the conventional methods. The newly synthesized ILs were well-characterized with FT-IR, ¹H NMR, (13)C NMR, (11)B, (19)F, (31)P and mass spectral analyses. The ILs were also screened for their antimicrobial and antitumor activities. Within the series, the salts tethering fluorinated counter anions 11-13, 21-23, 31-33 and 36-38 were found to be more potent against all bacterial and fungal strains at MIC 4-8 µg/mL. The in vitro antiproliferative activity was also investigated against four tumor cell lines (human ductal breast epithelial tumor T47D, human breast adenocarcinoma MCF-7, human epithelial carcinoma HeLa and human epithelial colorectal adenocarcinoma Caco-2) using the MTT assay, which revealed that promising antitumor activity was exhibited by compounds 5, 12 and 14.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Hidrazonas/síntese química , Compostos de Piridínio/síntese química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Halogenação , Células HeLa , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade , Ondas Ultrassônicas
6.
Molecules ; 20(9): 16048-67, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26364633

RESUMO

In the present study, a new series of 2,5-disubstituted-1,3,4-thiadiazole tethered 1,2,4-triazole, 1,3,4-thiadiazole, 1,3,4-oxadiazole and Schiff base derivatives were synthesized and characterized by IR, ¹H-NMR, (13)C-NMR, MS and elemental analyses. All compounds were screened for their antibacterial, antifungal and antiproliferative activity. Some of the synthesized derivatives have displayed promising biological activity.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Antineoplásicos/química , Antineoplásicos/síntese química , Oxidiazóis/química , Bases de Schiff/química , Tiadiazóis/química , Triazóis/química , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA