Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(23): e114086, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37807855

RESUMO

The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α. ImpL2 production, reflecting nutritional demands of activated macrophages, subsequently impairs insulin signaling in the fat body, thereby triggering FOXO-driven mobilization of lipoproteins. This metabolic adaptation is fundamental for the function of the immune system and an individual's resistance to infection. We demonstrated that analogically to Drosophila, mammalian immune-activated macrophages produce ImpL2 homolog IGFBP7 in a HIF1α-dependent manner and that enhanced IGFBP7 production by these cells induces mobilization of lipoproteins from hepatocytes. Hence, the production of ImpL2/IGFBP7 by macrophages represents an evolutionarily conserved mechanism by which macrophages alleviate insulin signaling in the central metabolic organ to secure nutrients necessary for their function upon bacterial infection.


Assuntos
Infecções Bacterianas , Proteínas de Drosophila , Resistência à Insulina , Animais , Antagonistas da Insulina/metabolismo , Antagonistas da Insulina/farmacologia , Drosophila/metabolismo , Insulina/metabolismo , Macrófagos/metabolismo , Infecções Bacterianas/metabolismo , Mamíferos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Drosophila/metabolismo
2.
Sci Rep ; 12(1): 20519, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443373

RESUMO

Adipocyte hypertrophy and expression of adipokines in subcutaneous adipose tissue (SAT) have been linked to steatosis, nonalcoholic steatohepatitis (NASH) and fibrosis in morbidly obese (BMI ≥ 40 kg/m2) subjects. It is unknown if this is also true for subjects with NAFLD with lesser degrees of obesity (BMI < 35 kg/m2). Thirty-two subjects with biopsy-proven NAFLD and 15 non-diabetic controls matched for BMI underwent fine-needle biopsies of SAT. Adipocyte volume was calculated. RNA-sequencing of SAT was performed in a subset of 20 NAFLD patients. Adipocyte volume and gene expression levels were correlated to the presence of NASH or significant fibrosis. Subjects with NAFLD had larger adipocyte volume compared with controls, (1939 pL, 95% CI 1130-1662 vs. 854 pL, 95% CI 781-926, p < 0.001). There was no association between adipocyte volume and the presence of NASH. Gene expression of adipokines previously described to correlate with NASH in morbid obesity, was not associated with NASH or fibrosis. Our results suggest that persons with NAFLD have larger SAT adipocytes compared with controls and that adipocytes are involved in the pathophysiology of hepatic steatosis in NAFLD. However, adipocyte volume was not associated with NASH or fibrosis in NAFLD subjects with varying degrees of obesity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade Mórbida/complicações , Adipocinas , Adipócitos , Biópsia por Agulha Fina , Fibrose , Hipertrofia
3.
Nat Rev Endocrinol ; 18(8): 461-472, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534573

RESUMO

Macrophages have diverse phenotypes and functions due to differences in their origin, location and pathophysiological context. Although their main role in the liver has been described as immunoregulatory and detoxifying, changes in macrophage phenotypes, diversity, dynamics and function have been reported during obesity-related complications such as non-alcoholic fatty liver disease (NAFLD). NAFLD encompasses multiple disease states from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocarcinoma. Obesity and insulin resistance are prominent risk factors for NASH, a disease with a high worldwide prevalence and no approved treatment. In this Review, we discuss the turnover and function of liver-resident macrophages (Kupffer cells) and monocyte-derived hepatic macrophages. We examine these populations in both steady state and during NAFLD, with an emphasis on NASH. The explosion in high-throughput gene expression analysis using single-cell RNA sequencing (scRNA-seq) within the last 5 years has revolutionized the study of macrophage heterogeneity, substantially increasing our understanding of the composition and diversity of tissue macrophages, including in the liver. Here, we highlight scRNA-seq findings from the last 5 years on the diversity of liver macrophages in homeostasis and metabolic disease, and reveal hepatic macrophage function beyond their classically described inflammatory role in the progression of NAFLD and NASH pathogenesis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
4.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235832

RESUMO

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Assuntos
COVID-19 , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Metiltransferases , Subfamília C de Receptores Semelhantes a Lectina de Células NK , RNA Helicases , SARS-CoV-2 , Proteínas não Estruturais Virais , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/imunologia , Metiltransferases/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/metabolismo , RNA Helicases/imunologia , Proteínas não Estruturais Virais/imunologia , Antígenos HLA-E
5.
Nat Metab ; 4(2): 190-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165448

RESUMO

The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.


Assuntos
Adipócitos Brancos , Creatina , Adipócitos Brancos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos , Obesidade/metabolismo , Fosfocreatina
6.
Gut ; 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022268

RESUMO

OBJECTIVE: To better comprehend transcriptional phenotypes of cancer cells, we globally characterised RNA-binding proteins (RBPs) to identify altered RNAs, including long non-coding RNAs (lncRNAs). DESIGN: To unravel RBP-lncRNA interactions in cancer, we curated a list of ~2300 highly expressed RBPs in human cells, tested effects of RBPs and lncRNAs on patient survival in multiple cohorts, altered expression levels, integrated various sequencing, molecular and cell-based data. RESULTS: High expression of RBPs negatively affected patient survival in 21 cancer types, especially hepatocellular carcinoma (HCC). After knockdown of the top 10 upregulated RBPs and subsequent transcriptome analysis, we identified 88 differentially expressed lncRNAs, including 34 novel transcripts. CRISPRa-mediated overexpression of four lncRNAs had major effects on the HCC cell phenotype and transcriptome. Further investigation of four RBP-lncRNA pairs revealed involvement in distinct regulatory processes. The most noticeable RBP-lncRNA connection affected lipid metabolism, whereby the non-canonical RBP CCT3 regulated LINC00326 in a chaperonin-independent manner. Perturbation of the CCT3-LINC00326 regulatory network led to decreased lipid accumulation and increased lipid degradation in cellulo as well as diminished tumour growth in vivo. CONCLUSIONS: We revealed that RBP gene expression is perturbed in HCC and identified that RBPs exerted additional functions beyond their tasks under normal physiological conditions, which can be stimulated or intensified via lncRNAs and affected tumour growth.

7.
Nat Med ; 27(11): 1941-1953, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608330

RESUMO

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Assuntos
Adipócitos/metabolismo , Ciclo Celular/fisiologia , Senescência Celular/fisiologia , Hiperinsulinismo/patologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Ciclina D1/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia
8.
Gastroenterology ; 161(6): 1982-1997.e11, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34425095

RESUMO

BACKGROUND AND AIMS: Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2. METHODS: We performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations. RESULTS: Increased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity. CONCLUSIONS: Herein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity.


Assuntos
Fígado Gorduroso/enzimologia , Fumarato Hidratase/metabolismo , Resistência à Insulina , Fígado/enzimologia , Macrófagos/enzimologia , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/enzimologia , Animais , Carboxiliases/genética , Carboxiliases/metabolismo , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fumarato Hidratase/genética , Fumaratos/metabolismo , Humanos , Hidroliases/genética , Hidroliases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Obesidade/genética , Estresse Oxidativo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Succinatos/metabolismo
9.
Biores Open Access ; 9(1): 258-268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376632

RESUMO

The myeloid cells infiltrating the heart early after acute myocardial infarction elaborate a secretome that largely orchestrates subsequent ventricular wall repair. Regulating this innate immune response could be a means to improve infarct healing. To pilot this concept, we utilized (ß1,3-d-) glucan-encapsulated small interfering RNA (siRNA)-containing particles (GeRPs), targeting mononuclear phagocytes, delivered to mice as a one-time intramyocardial injection immediately after acute infarction. Findings demonstrated that cardiac macrophages phagocytosed GeRPs in vivo and had little systemic dissemination, thus providing a means to deliver local therapeutics. Acute infarcts were then injected in vivo with phosphate-buffered saline (PBS; vehicle) or GeRPs loaded with siRNA to Map4k4, and excised hearts were examined at 3 and 7 days by quantitative polymerase chain reaction, flow cytometry, and histology. Compared with infarcted PBS-treated hearts, hearts with intrainfarct injections of siRNA-loaded GeRPs exhibited 69-89% reductions in transcripts for Map4k4 (mitogen-activated protein kinase kinase kinase kinase 4), interleukin (IL)-1ß, and tumor necrosis factor α at 3 days. Expression of other factors relevant to matrix remodeling-monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinases, hyaluronan synthases, matricellular proteins, and profibrotic factors transforming growth factor beta (TGF-ß), and connective tissue growth factor (CTGF)-were also decreased. Most effects peaked at 3 days, but, in some instances (Map4k4, IL-1ß, TGF-ß, CTGF, versican, and periostin), suppression persisted to 7 days. Thus, direct intramyocardial GeRP injection could serve as a novel and clinically translatable platform for in vivo RNA delivery to intracardiac macrophages for local and selective immunomodulation of the infarct microenvironment.

10.
Mol Cell ; 79(1): 1-3, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619466

RESUMO

In this issue of Molecular Cell, Toda et al. (2020) show that postprandial elevation of LPS and insulin induce the production of IL-10 by adipose tissue macrophages. Hepatic gluconeogenesis is then inhibited synergistically by insulin and IL-10 to facilitate glucose clearance.


Assuntos
Insulina , Interleucina-10 , Tecido Adiposo , Lipopolissacarídeos , Fígado , Macrófagos , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
11.
Diabetologia ; 62(12): 2179-2187, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690986

RESUMO

Extracellular vesicles (EVs) are submicron-sized lipid envelopes that are produced and released from a parent cell and can be taken up by a recipient cell. EVs are capable of mediating cellular signalling by carrying nucleic acids, proteins, lipids and cellular metabolites between cells and organs. Metabolic dysfunction is associated with changes in plasma concentrations of EVs as well as alterations in their EV cargo. Since EVs can act as messengers between parent and recipient cells, they could be involved in cell-to-cell and organ-to-organ communication in metabolic diseases. Recent literature has shown that EVs are produced by cells within metabolic tissues, such as adipose tissue, pancreas, muscle and liver. These vesicles have therefore been proposed as a novel intercellular communication mode in systemic metabolic regulation. In this review, we will describe and discuss the current literature that investigates the role of adipose-derived EVs in the regulation of obesity-associated metabolic disease. We will particularly focus on the EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes.


Assuntos
Exossomos/metabolismo , Vesículas Extracelulares/fisiologia , Doenças Metabólicas/metabolismo , Adipócitos/metabolismo , Comunicação Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Macrófagos/metabolismo
12.
Elife ; 82019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31418690

RESUMO

White adipose tissue (WAT) inflammation contributes to the development of insulin resistance in obesity. While the role of adipose tissue macrophage (ATM) pro-inflammatory signalling in the development of insulin resistance has been established, it is less clear how WAT inflammation is initiated. Here, we show that ATMs isolated from obese mice and humans exhibit markers of increased rate of de novo phosphatidylcholine (PC) biosynthesis. Macrophage-specific knockout of phosphocholine cytidylyltransferase A (CCTα), the rate-limiting enzyme of de novo PC biosynthesis pathway, alleviated obesity-induced WAT inflammation and insulin resistance. Mechanistically, CCTα-deficient macrophages showed reduced ER stress and inflammation in response to palmitate. Surprisingly, this was not due to lower exogenous palmitate incorporation into cellular PCs. Instead, CCTα-null macrophages had lower membrane PC turnover, leading to elevated membrane polyunsaturated fatty acid levels that negated the pro-inflammatory effects of palmitate. Our results reveal a causal link between obesity-associated increase in de novo PC synthesis, accelerated PC turnover and pro-inflammatory activation of ATMs.


Assuntos
Tecido Adiposo/patologia , Inflamação/patologia , Macrófagos/metabolismo , Obesidade/patologia , Fosfatidilcolinas/metabolismo , Animais , Colina-Fosfato Citidililtransferase/deficiência , Colina-Fosfato Citidililtransferase/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Humanos , Resistência à Insulina , Camundongos Obesos
13.
Methods Mol Biol ; 1951: 49-57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825143

RESUMO

Macrophages are cells of the immune system that have been suggested as important regulators of whole-body metabolism in mammals. In obesity, adipose tissue macrophages (ATMs) are thought to play both a detrimental and a beneficial role in the regulation of insulin sensitivity. Here, we describe a protocol to prepare and administer glucan-encapsulated RNAi particles (GeRPs), for specific delivery of siRNA and subsequent gene silencing in ATMs in obese mice. Using the GeRP technology to silence genes provides a unique method to study the function of factors expressed by ATMs in the regulation of metabolism.


Assuntos
Tecido Adiposo/citologia , Inativação Gênica , Glucanos , Macrófagos/metabolismo , Nanopartículas , RNA Interferente Pequeno/genética , Animais , Imunofluorescência , Técnicas de Transferência de Genes , Glucanos/química , Imunidade Inata , Macrófagos/imunologia , Camundongos , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/ultraestrutura , RNA Interferente Pequeno/administração & dosagem
14.
Nat Metab ; 1(4): 445-459, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694874

RESUMO

Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor-binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.


Assuntos
Fígado/metabolismo , Macrófagos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Camundongos , Obesidade/metabolismo
15.
Mol Metab ; 6(11): 1517-1528, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29107297

RESUMO

OBJECTIVE: Obesity-induced accumulation of ectopic fat in the liver is thought to contribute to the development of insulin resistance, and increased activity of hepatic CB1R has been shown to promote both processes. However, lipid accumulation in liver can be experimentally dissociated from insulin resistance under certain conditions, suggesting the involvement of additional mechanisms. Obesity is also associated with pro-inflammatory changes which, in turn, can promote insulin resistance. Kupffer cells (KCs), the liver's resident macrophages, are the major source of pro-inflammatory cytokines in the liver, such as TNF-α, which has been shown to inhibit insulin signaling in multiple cell types, including hepatocytes. Here, we sought to identify the role of CB1R in KCs in obesity-induced hepatic insulin resistance. METHODS: We used intravenously administered ß-D-glucan-encapsulated siRNA to knock-down CB1R gene expression selectively in KCs. RESULTS: We demonstrate that a robust knock-down of the expression of Cnr1, the gene encoding CB1R, results in improved glucose tolerance and insulin sensitivity in diet-induced obese mice, without affecting hepatic lipid content or body weight. Moreover, Cnr1 knock-down in KCs was associated with a shift from pro-inflammatory M1 to anti-inflammatory M2 cytokine profile and improved insulin signaling as reflected by increased insulin-induced Akt phosphorylation. CONCLUSION: These findings suggest that CB1R expressed in KCs plays a critical role in obesity-related hepatic insulin resistance via a pro-inflammatory mechanism.


Assuntos
Resistência à Insulina , Células de Kupffer/metabolismo , Obesidade/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptor CB1 de Canabinoide/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
16.
Stem Cell Res Ther ; 8(1): 250, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116032

RESUMO

Regulation of adipose tissue stem cells (ASCs) and adipogenesis impact the development of excess body fat-related metabolic complications. Animal studies have suggested the presence of distinct subtypes of ASCs with different differentiation properties. In addition, ASCs are becoming the biggest source of mesenchymal stem cells used in therapies, which requires deep characterization. Using unbiased single cell transcriptomics we aimed to characterize ASC populations in human subcutaneous white adipose tissue (scWAT). The transcriptomes of 574 single cells from the WAT total stroma vascular fraction (SVF) of four healthy women were analyzed by clustering and t-distributed stochastic neighbor embedding visualization. The identified cell populations were then mapped to cell types present in WAT using data from gene expression microarray profiling of flow cytometry-sorted SVF. Cells clustered into four distinct populations: three adipose tissue-resident macrophage subtypes and one large, homogeneous population of ASCs. While pseudotemporal ordering analysis indicated that the ASCs were in slightly different differentiation stages, the differences in gene expression were small and could not distinguish distinct ASC subtypes. Altogether, in healthy individuals, ASCs seem to constitute a single homogeneous cell population that cannot be subdivided by single cell transcriptomics, suggesting a common origin for human adipocytes in scWAT.


Assuntos
Adipócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Transcriptoma
17.
Exp Cell Res ; 360(1): 35-40, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341447

RESUMO

Macrophages are versatile and multifunctional cell types present in most vertebrate tissues. They are the first line of defense against pathogens through phagocytosis of microbial infections, particles and dead cells. Macrophages harbor additional functions besides immune protection by participating in essential homeostatic and tissue development functions. The immune response requires a concomitant and coordinated regulation of the energetic metabolism. In this review, we will discuss how macrophages influence metabolic tissues and in turn how metabolic pathways, particularly glucose and lipid metabolism, affect macrophage phenotypes.


Assuntos
Metabolismo Energético , Homeostase/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Humanos
18.
Nat Commun ; 6: 8995, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26688060

RESUMO

Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe(-/-) mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe(-/-) and Ldlr(-/-) mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Doenças Vasculares/metabolismo , Aminopiridinas/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Regulação da Expressão Gênica/fisiologia , Inflamação/genética , Macrófagos , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Doenças Vasculares/genética , Quinase Induzida por NF-kappaB
19.
FASEB J ; 29(7): 2959-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805830

RESUMO

Obesity promotes insulin resistance associated with liver inflammation, elevated glucose production, and type 2 diabetes. Although insulin resistance is attenuated in genetic mouse models that suppress systemic inflammation, it is not clear whether local resident macrophages in liver, denoted Kupffer cells (KCs), directly contribute to this syndrome. We addressed this question by selectively silencing the expression of the master regulator of inflammation, NF-κB, in KCs in obese mice. We used glucan-encapsulated small interfering RNA particles (GeRPs) that selectively silence gene expression in macrophages in vivo. Following intravenous injections, GeRPs containing siRNA against p65 of the NF-κB complex caused loss of NF-κB p65 expression in KCs without disrupting NF-κB in hepatocytes or macrophages in other tissues. Silencing of NF-κB expression in KCs in obese mice decreased cytokine secretion and improved insulin sensitivity and glucose tolerance without affecting hepatic lipid accumulation. Importantly, GeRPs had no detectable toxic effect. Thus, KCs are key contributors to hepatic insulin resistance in obesity and a potential therapeutic target for metabolic disease.


Assuntos
Resistência à Insulina/fisiologia , Células de Kupffer/metabolismo , Obesidade/metabolismo , Fator de Transcrição RelA/antagonistas & inibidores , Animais , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Inativação Gênica , Teste de Tolerância a Glucose , Humanos , Técnicas In Vitro , Injeções Intravenosas , Células de Kupffer/patologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Obesidade/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Fator de Transcrição RelA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA