Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Elife ; 122023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266576

RESUMO

Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPα-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and ß-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.


Assuntos
Mielopoese , Complexo Repressor Polycomb 1 , Animais , Camundongos , Complexo Repressor Polycomb 1/metabolismo , Mielopoese/genética , Histonas , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo
3.
Leukemia ; 37(9): 1895-1907, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37198323

RESUMO

UTX/KDM6A, a histone H3K27 demethylase and a key component of the COMPASS complex, is frequently lost or mutated in cancer; however, its tumor suppressor function remains largely uncharacterized in multiple myeloma (MM). Here, we show that the conditional deletion of the X-linked Utx in germinal center (GC) derived cells collaborates with the activating BrafV600E mutation and promotes induction of lethal GC/post-GC B cell malignancies with MM-like plasma cell neoplasms being the most frequent. Mice that developed MM-like neoplasms showed expansion of clonal plasma cells in the bone marrow and extramedullary organs, serum M proteins, and anemia. Add-back of either wild-type UTX or a series of mutants revealed that cIDR domain, that forms phase-separated liquid condensates, is largely responsible for the catalytic activity-independent tumor suppressor function of UTX in MM cells. Utx loss in concert with BrafV600E only slightly induced MM-like profiles of transcriptome, chromatin accessibility, and H3K27 acetylation, however, it allowed plasma cells to gradually undergo full transformation through activation of transcriptional networks specific to MM that induce high levels of Myc expression. Our results reveal a tumor suppressor function of UTX in MM and implicate its insufficiency in the transcriptional reprogramming of plasma cells in the pathogenesis of MM.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Linfócitos B/metabolismo , Genes Supressores de Tumor , Centro Germinativo/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas B-raf/genética
4.
Cancer Immunol Immunother ; 72(8): 2635-2648, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37069353

RESUMO

Dysfunctional anti-tumor immunity has been implicated in the pathogenesis of mature B cell neoplasms, such as multiple myeloma and B cell lymphoma; however, the impact of exhausted T cells on disease development remains unclear. Therefore, the present study investigated the features and pathogenetic significance of exhausted T cells using a mouse model of de novo mature B cell neoplasms, which is likely to show immune escape similar to human patients. The results revealed a significant increase in PD-1+ Tim-3- and PD-1+ Tim-3+ T cells in sick mice. Furthermore, PD-1+ Tim-3+ T cells exhibited direct cytotoxicity with a short lifespan, showing transcriptional similarities to terminally exhausted T cells. On the other hand, PD-1+ Tim-3- T cells not only exhibited immunological responsiveness but also retained stem-like transcriptional features, suggesting that they play a role in the long-term maintenance of anti-tumor immunity. In PD-1+ Tim-3- and PD-1+ Tim-3+ T cells, the transcription factors Tox and Nr4a2, which reportedly contribute to the progression of T cell exhaustion, were up-regulated in vivo. These transcription factors were down-regulated by IMiDs in our in vitro T cell exhaustion analyses. The prevention of excessive T cell exhaustion may maintain effective anti-tumor immunity to cure mature B cell neoplasms.


Assuntos
Linfoma de Células B , Mieloma Múltiplo , Animais , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Modelos Animais de Doenças , Fatores de Transcrição
5.
Cells ; 11(14)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35883630

RESUMO

The recent development of next-generation sequencing (NGS) technologies has contributed to research into various biological processes. These novel NGS technologies have revealed the involvement of epigenetic memories in trained immunity, which are responses to transient stimulation and result in better responses to secondary challenges. Not only innate system cells, such as macrophages, monocytes, and natural killer cells, but also bone marrow hematopoietic stem cells (HSCs) have been found to gain memories upon transient stimulation, leading to the enhancement of responses to secondary challenges. Various stimuli, including microbial infection, can induce the epigenetic reprogramming of innate immune cells and HSCs, which can result in an augmented response to secondary stimulation. In this review, we introduce novel NGS technologies and their application to unraveling epigenetic memories that are key in trained immunity and summarize the recent findings in trained immunity. We also discuss our most recent finding regarding epigenetic memory in aged HSCs, which may be associated with the exposure of HSCs to aging-related stresses.


Assuntos
Epigênese Genética , Imunidade Inata , Epigenômica , Células-Tronco Hematopoéticas , Monócitos
6.
Biochem Biophys Res Commun ; 619: 117-123, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35753219

RESUMO

Radiation therapy is one of the major treatment modalities for patients with cancers. However, ionizing radiation (IR) damages not only cancer cells but also the surrounding vascular endothelial cells (ECs). Hippo pathway effector genes Yap1 and Taz are the two transcriptional coactivators that have crucial roles in tissue homeostasis and vascular integrity in various organs. However, their function in adult ECs at the steady state and after IR is poorly understood. Here, we report sex- and context-dependent roles of endothelial YAP1/TAZ in maintaining vascular integrity and organismal survival. EC-specific Yap1/Taz deletion compromised systemic vascular integrity, resulting in lethal circulation failure preferentially in male mice. Furthermore, EC-specific Yap1/Taz deletion induced acute lethality upon sublethal IR that was closely associated with exacerbated systemic vascular dysfunction and circulation failure. Consistent with these findings, RNA-seq analysis revealed downregulation of tight junction genes in Yap1/Taz-deleted ECs. Collectively, our findings highlight the importance of endothelial YAP1/TAZ for maintaining adult vascular function, which may provide clinical implications for preventing organ injury after radiation therapy.


Assuntos
Neoplasias , Transativadores , Animais , Células Endoteliais/metabolismo , Masculino , Camundongos , Neoplasias/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
7.
Nat Commun ; 13(1): 2691, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577813

RESUMO

Hematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here, we present an integrated analysis of transcriptome and chromatin accessibility of aged HSCs and downstream progenitors. Alterations in chromatin accessibility preferentially take place in HSCs with aging, which gradually resolve with differentiation. Differentially open accessible regions (open DARs) in aged HSCs are enriched for enhancers and show enrichment of binding motifs of the STAT, ATF, and CNC family transcription factors that are activated in response to external stresses. Genes linked to open DARs show significantly higher levels of basal expression and their expression reaches significantly higher peaks after cytokine stimulation in aged HSCs than in young HSCs, suggesting that open DARs contribute to augmented transcriptional responses under stress conditions. However, a short-term stress challenge that mimics infection is not sufficient to induce persistent chromatin accessibility changes in young HSCs. These results indicate that the ongoing and/or history of exposure to external stresses may be epigenetically inscribed in HSCs to augment their responses to external stimuli.


Assuntos
Cromatina , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Células-Tronco Hematopoéticas/metabolismo
8.
Leukemia ; 36(2): 452-463, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34497325

RESUMO

Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.


Assuntos
Diferenciação Celular , Janus Quinase 2/genética , Mutação , Complexo Repressor Polycomb 1/fisiologia , Mielofibrose Primária/patologia , Animais , Feminino , Lisina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielofibrose Primária/etiologia , Mielofibrose Primária/metabolismo , Ubiquitinação
9.
Sci Rep ; 11(1): 21396, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725436

RESUMO

Both EZH2 and its homolog EZH1 function as histone H3 Lysine 27 (H3K27) methyltransferases and repress the transcription of target genes. Dysregulation of H3K27 trimethylation (H3K27me3) plays an important role in the development and progression of cancers such as hepatocellular carcinoma (HCC). This study investigated the relationship between the expression of EZH1/2 and the level of H3K27me3 in HCC. Additionally, the role of EZH1/2 in cell growth, tumorigenicity, and resistance to sorafenib were also analyzed. Both the lentiviral knockdown and the pharmacological inhibition of EZH1/2 (UNC1999) diminished the level of H3K27me3 and suppressed cell growth in liver cancer cells, compared with EZH1 or EZH2 single knockdown. Although a significant association was observed between EZH2 expression and H3K27me3 levels in HCC samples, overexpression of EZH1 appeared to contribute to enhanced H3K27me3 levels in some EZH2lowH3K27me3high cases. Akt suppression following sorafenib treatment resulted in an increase of the H3K27me3 levels through a decrease in EZH2 phosphorylation at serine 21. The combined use of sorafenib and UNC1999 exhibited synergistic antitumor effects in vitro and in vivo. Combination treatment canceled the sorafenib-induced enhancement in H3K27me3 levels, indicating that activation of EZH2 function is one of the mechanisms of sorafenib-resistance in HCC. In conclusion, sorafenib plus EZH1/2 inhibitors may comprise a novel therapeutic approach in HCC.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Carcinoma Hepatocelular/terapia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Indazóis/uso terapêutico , Neoplasias Hepáticas/terapia , Piperazinas/uso terapêutico , Complexo Repressor Polycomb 2/antagonistas & inibidores , Piridonas/uso terapêutico , Sorafenibe/uso terapêutico , Idoso , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Terapia Genética , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Complexo Repressor Polycomb 2/genética
10.
Leukemia ; 35(4): 1156-1165, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32820269

RESUMO

EZH1 and EZH2 are enzymatic components of polycomb repressive complex (PRC) 2, which catalyzes histone H3K27 tri-methylation (H3K27me3) to repress the transcription of PRC2 target genes. We previously reported that the hematopoietic cell-specific Ezh2 deletion (Ezh2Δ/Δ) induced a myelodysplastic syndrome (MDS)-like disease in mice. We herein demonstrated that severe PRC2 insufficiency induced by the deletion of one allele Ezh1 in Ezh2-deficient mice (Ezh1+/-Ezh2Δ/Δ) caused advanced dyserythropoiesis accompanied by a differentiation block and enhanced apoptosis in erythroblasts. p53, which is activated by impaired ribosome biogenesis in del(5q) MDS, was specifically activated in erythroblasts, but not in hematopoietic stem or progenitor cells in Ezh1+/-Ezh2Δ/Δ mice. Cdkn2a, a major PRC2 target encoding p19Arf, which activates p53 by inhibiting MDM2 E3 ubiquitin ligase, was de-repressed in Ezh1+/-Ezh2Δ/Δ erythroblasts. The deletion of Cdkn2a as well as p53 rescued dyserythropoiesis in Ezh1+/-Ezh2Δ/Δ mice, indicating that PRC2 insufficiency caused p53-dependent dyserythropoiesis via the de-repression of Cdkn2a. Since PRC2 insufficiency is often involved in the pathogenesis of MDS, the present results suggest that p53-dependent dyserythropoiesis manifests in MDS in the setting of PRC2 insufficiency.


Assuntos
Suscetibilidade a Doenças , Eritropoese/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Complexo Repressor Polycomb 2/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Biomarcadores , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Eritroblastos/metabolismo , Eritroblastos/patologia , Citometria de Fluxo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Ligação Proteica
11.
Biochem Biophys Res Commun ; 521(3): 612-619, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31679686

RESUMO

Polycomb-group proteins are critical regulators of stem cells. We previously demonstrated that Bmi1, a component of polycomb repressive complex 1, defines the regenerative capacity of hematopoietic stem cells (HSCs). Here, we attempted to ameliorate the age-related decline in HSC function by modulating Bmi1 expression. The forced expression of Bmi1 did not attenuate myeloid-biased differentiation of aged HSCs. However, single cell transplantation assays revealed that the sustained expression of Bmi1 augmented the multi-lineage repopulating capacity of aged HSCs. Chromatin immunoprecipitation-sequencing of Bmi1 combined with an RNA sequence analysis showed that the majority of Bmi1 direct target genes are developmental regulator genes marked with a bivalent histone domain. The sustained expression of Bmi1 strictly maintained the transcriptional repression of their target genes and enforced expression of HSC signature genes in aged HSCs. Therefore, the manipulation of Bmi1 expression is a potential approach against impairments in HSC function with aging.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Envelhecimento , Animais , Senescência Celular , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo
12.
Blood Adv ; 3(17): 2537-2549, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31471323

RESUMO

KDM2B together with RING1B, PCGF1, and BCOR or BCORL1 comprise polycomb repressive complex 1.1 (PRC1.1), a noncanonical PRC1 that catalyzes H2AK119ub1. It binds to nonmethylated CpG islands through its zinc finger-CxxC DNA binding domain and recruits the complex to target gene loci. Recent studies identified the loss of function mutations in the PRC1.1 gene, BCOR and BCORL1 in human T-cell acute lymphoblastic leukemia (T-ALL). We previously reported that Bcor insufficiency induces T-ALL in mice, supporting a tumor suppressor role for BCOR. However, the function of BCOR responsible for tumor suppression, either its corepressor function for BCL6 or that as a component of PRC1.1, remains unclear. We herein examined mice specifically lacking the zinc finger-CxxC domain of KDM2B in hematopoietic cells. Similar to Bcor-deficient mice, Kdm2b-deficient mice developed lethal T-ALL mostly in a NOTCH1-dependent manner. A chromatin immunoprecipitation sequence analysis of thymocytes revealed the binding of KDM2B at promoter regions, at which BCOR and EZH2 colocalized. KDM2B target genes markedly overlapped with those of NOTCH1 in human T-ALL cells, suggesting that noncanonical PRC1.1 antagonizes NOTCH1-mediated gene activation. KDM2B target genes were expressed at higher levels than the others and were marked with high levels of H2AK119ub1 and H3K4me3, but low levels of H3K27me3, suggesting that KDM2B target genes are transcriptionally active or primed for activation. These results indicate that PRC1.1 plays a key role in restricting excessive transcriptional activation by active NOTCH1, thereby acting as a tumor suppressor in the initiation of T-cell leukemogenesis.


Assuntos
Carcinogênese/química , Proteínas F-Box/fisiologia , Histona Desmetilases com o Domínio Jumonji/fisiologia , Leucemia de Células T/etiologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Ilhas de CpG , Proteínas F-Box/metabolismo , Histonas , Humanos , Histona Desmetilases com o Domínio Jumonji/deficiência , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Mutação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Domínios Proteicos , Receptor Notch1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Transcricional , Dedos de Zinco
13.
Exp Hematol ; 76: 24-37, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31408689

RESUMO

The polycomb group protein Bmi1 maintains hematopoietic stem cell (HSC) functions. We previously reported that Bmi1-deficient mice exhibited progressive fatty changes in bone marrow (BM). A large portion of HSCs reside in the perivascular niche created partly by endothelial cells and leptin receptor+ (LepR+) BM stromal cells. To clarify how Bmi1 regulates the HSC niche, we specifically deleted Bmi1 in LepR+ cells in mice. The Bmi1 deletion promoted the adipogenic differentiation of LepR+ stromal cells and caused progressive fatty changes in the BM of limb bones with age, resulting in reductions in the numbers of HSCs and progenitors in BM and enhanced extramedullary hematopoiesis. This adipogenic change was also evident during BM regeneration after irradiation. Several adipogenic regulator genes appeared to be regulated by Bmi1. Our results indicate that Bmi1 keeps the adipogenic differentiation program repressed in BM stromal cells to maintain the integrity of the HSC niche.


Assuntos
Adipogenia/fisiologia , Células-Tronco Hematopoéticas/citologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Nicho de Células-Tronco , Animais , Medula Óssea/patologia , Medula Óssea/fisiologia , Linhagem Celular , Autorrenovação Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Repressor Polycomb 1/deficiência , Proteínas Proto-Oncogênicas/deficiência , Receptores para Leptina/análise , Regeneração , Células Estromais/química , Células Estromais/patologia
14.
Biochem Biophys Res Commun ; 511(4): 765-771, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30833073

RESUMO

Protein-tyrosine kinases transmit signals by phosphorylating their substrates in diverse cellular events. The receptor-type tyrosine kinase ErbB4, a member of the epidermal growth factor receptor subfamily, is activated and proteolytically cleaved upon ligand stimulation, and the cleaved ErbB4 intracellular domain (4ICD) is released into the cytoplasm and the nucleus. We previously showed that generation of nuclear 4ICD by neuregulin-1 (NRG-1) stimulation enhances the levels of trimethylation of histone H3 at lysine 9 (H3K9me3). However, it remains unclear how nuclear 4ICD enhances H3K9me3 levels. Here we show that the histone H3K9 methyltransferase SUV39H1 associates with NRG-1/ErbB4-mediated H3K9me3. Knockdown of SUV39H1 blocked NRG-1-mediated enhancement of the levels of H3K9me3. Nuclear 4ICD was found to phosphorylate SUV39H1 primarily at Tyr-297, -303, and -308 that are conserved among humans, mice, and flies. Furthermore, knockdown-rescue experiments showed that the unphosphorylatable SUV39H1 mutant (3 YF) was incapable of enhancing the levels of H3K9me3 upon NRG-1 stimulation. These results suggest that nuclear ErbB4 enhances H3K9me3 levels through tyrosine phosphorylation of SUV39H1 in NRG-1/ErbB4 signal-mediated chromatin remodeling.


Assuntos
Histonas/metabolismo , Metiltransferases/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Metilação , Fosforilação , Tirosina/metabolismo
15.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830864

RESUMO

Poly(ADP-ribosyl)ation refers to the covalent attachment of ADP-ribose to protein, generating branched, long chains of ADP-ribose moieties, known as poly(ADP-ribose) (PAR). Poly(ADP-ribose) polymerase 1 (PARP1) is the main polymerase and acceptor of PAR in response to DNA damage. Excessive intracellular PAR accumulation due to PARP1 activation leads cell death in a pathway known as parthanatos. PAR degradation is mainly controlled by poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribose-acceptor hydrolase 3 (ARH3). Our previous results demonstrated that ARH3 confers protection against hydrogen peroxide (H2O2) exposure, by lowering cytosolic and nuclear PAR levels and preventing apoptosis-inducing factor (AIF) nuclear translocation. We identified a family with an ARH3 gene mutation that resulted in a truncated, inactive protein. The 8-year-old proband exhibited a progressive neurodegeneration phenotype. In addition, parthanatos was observed in neurons of the patient's deceased sibling, and an older sibling exhibited a mild behavioral phenotype. Consistent with the previous findings, the patient's fibroblasts and ARH3-deficient mice were more sensitive, respectively, to H2O2 stress and cerebral ischemia/reperfusion-induced PAR accumulation and cell death. Further, PARP1 inhibition alleviated cell death and injury resulting from oxidative stress and ischemia/reperfusion. PARP1 inhibitors may attenuate the progression of neurodegeneration in affected patients with ARH3 deficiency.


Assuntos
Glicosídeo Hidrolases/genética , Doenças Neurodegenerativas/genética , Parthanatos/genética , Poli Adenosina Difosfato Ribose/metabolismo , Adulto , Animais , Fator de Indução de Apoptose/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/patologia , Células Cultivadas , Criança , Pré-Escolar , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/ética , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Fibroblastos , Glicosídeo Hidrolases/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Parthanatos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Cultura Primária de Células , Traumatismo por Reperfusão/complicações , Pele/citologia
16.
Leukemia ; 33(7): 1723-1735, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635632

RESUMO

POEMS syndrome is a rare paraneoplastic disease associated with monoclonal plasma cells; however, the pathogenic importance of plasma cells remains unclear. We performed comprehensive genetic analyses of plasma cells in 20 patients with POEMS syndrome. Whole exome sequencing was performed in 11 cases and found a total of 308 somatic mutations in 285 genes. Targeted sequencing was performed in all 20 cases and identified 20 mutations in 7 recurrently mutated genes, namely KLHL6, LTB, EHD1, EML4, HEPHL1, HIPK1, and PCDH10. None of the driver gene mutations frequently found in multiple myeloma (MM) such as NRAS, KRAS, BRAF, and TP53 was detected. Copy number analysis showed chromosomal abnormalities shared with monoclonal gammopathy of undetermined significance (MGUS), suggesting a partial overlap in the early development of MGUS and POEMS syndrome. RNA sequencing revealed a transcription profile specific to POEMS syndrome when compared with normal plasma cells, MGUS and MM. Unexpectedly, disease-specific VEGFA expression was not increased in POEMS syndrome. Our study illustrates that the genetic and transcriptional profiles of plasma cells in POEMS syndrome are distinct from MM and MGUS, indicating unique function of clonal plasma cells in its pathogenesis.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Mutação , Recidiva Local de Neoplasia/genética , Síndrome POEMS/genética , Plasmócitos/metabolismo , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Síndrome POEMS/tratamento farmacológico , Síndrome POEMS/patologia , Plasmócitos/patologia , Prognóstico , Sequenciamento do Exoma/métodos , Adulto Jovem
17.
J Cell Biochem ; 120(2): 2259-2270, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30206966

RESUMO

Transforming growth factor-ß (TGF-ß) induces apoptosis of normal epithelial cells, such as mammary epithelium. Although breast cancer progression associates with acquisition of resistance to TGF-ß-induced apoptosis, the molecular mechanisms underlying this resistance are largely unknown. Here, we show that forkhead box protein A1 (FOXA1), which is known as a pioneer transcription factor, suppresses TGF-ß-induced apoptosis of estrogen receptor-positive breast cancer cells. FOXA1 is found to inhibit nuclear translocation of Smad3, a key transcription factor downstream of TGF-ß signaling, through suppression of the binding of Smad3 to the nuclear import receptor importin7. Furthermore, RNA sequencing analyses show that knockdown of FOXA1 upregulates Smad3-mediated proapoptotic gene expression. These results demonstrate that FOXA1 as a potent survival factor that suppresses TGF-ß-induced apoptosis by inhibiting Smad3 signaling in estrogen receptor-positive breast cancer cells. Thus, we provide evidence for the first time that FOXA1 localizing to the cytoplasm negatively regulates Smad3-induced apoptosis in TGF-ß-mediated signal transduction.

18.
Oncogene ; 38(5): 637-655, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30177833

RESUMO

Protein-tyrosine kinases regulate a broad range of intracellular processes occurring primarily just beneath the plasma membrane. With the greatest care to prevent dephosphorylation, we have shown that nuclear tyrosine phosphorylation regulates global chromatin structural states. However, the roles for tyrosine phosphorylation in the nucleus are poorly understood. Here we identify transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), which suppresses transforming growth factor-ß (TGF-ß) signaling through the association with Smad2/3 transcription factor, as a new nuclear substrate of c-Abl tyrosine kinase. Replacement of the three tyrosine residues Tyr-524, -610, and -1048 with phenylalanine (3YF) inhibits c-Abl-mediated phosphorylation of TIF1γ and enhances TIF1γ's association with Smad3. Importantly, knockdown-rescue experiments show that 3YF strengthens TIF1γ's ability to suppress TGF-ß signaling. Intriguingly, activation of c-Abl by epidermal growth factor (EGF) induces desuppression of TGF-ß signaling via enhancing the tyrosine phosphorylation level of TIF1γ. TGF-ß together with EGF synergistically provokes desuppressive responses of epithelial-to-mesenchymal transition through tyrosine phosphorylation of TIF1γ. These results suggest that nuclear c-Abl-mediated tyrosine phosphorylation of TIF1γ has a desuppressive role in TGF-ß-Smad2/3 signaling.


Assuntos
Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células A549 , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Células MCF-7 , Fosforilação , Proteínas Proto-Oncogênicas c-abl/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética
19.
iScience ; 9: 161-174, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30396150

RESUMO

Polycomb repressive complex (PRC) 2 represses transcription through histone H3K27 trimethylation (H3K27me3). We previously reported that the hematopoietic-cell-specific deletion of Ezh2, encoding a PRC2 enzyme, induced myelodysplastic syndrome (MDS) in mice, whereas the concurrent Ezh1 deletion depleted hematopoietic stem and progenitor cells (HSPCs). We herein demonstrated that mice with only one Ezh1 allele (Ezh1+/-Ezh2Δ/Δ) maintained HSPCs. A chromatin immunopreciptation sequence analysis revealed that residual PRC2 preferentially targeted genes with high levels of H3K27me3 and H2AK119 monoubiquitination (H2AK119ub1) in HSPCs (designated as Ezh1 core target genes), which were mostly developmental regulators, and maintained H3K27me3 levels in Ezh1+/-Ezh2Δ/Δ HSPCs. Even upon the complete depletion of Ezh1 and Ezh2, H2AK119ub1 levels were largely retained, and only a minimal number of Ezh1 core targets were de-repressed. These results indicate that genes marked with high levels of H3K27me3 and H2AK119ub1 are the core targets of polycomb complexes in HSPCs as well as MDS stem cells.

20.
Blood ; 132(23): 2470-2483, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30228234

RESUMO

BCOR, encoding BCL-6 corepressor (BCOR), is X-linked and targeted by somatic mutations in various hematological malignancies including myelodysplastic syndrome (MDS). We previously reported that mice lacking Bcor exon 4 (Bcor ΔE4/y ) in the hematopoietic compartment developed NOTCH-dependent acute T-cell lymphoblastic leukemia (T-ALL). Here, we analyzed mice lacking Bcor exons 9 and 10 (Bcor ΔE9-10/y ), which express a carboxyl-terminal truncated BCOR that fails to interact with core effector components of polycomb repressive complex 1.1. Bcor ΔE9-10/y mice developed lethal T-ALL in a similar manner to Bcor ΔE4/y mice, whereas Bcor ΔE9-10/y hematopoietic cells showed a growth advantage in the myeloid compartment that was further enhanced by the concurrent deletion of Tet2 Tet2 Δ/Δ Bcor ΔE9-10/y mice developed lethal MDS with progressive anemia and leukocytopenia, inefficient hematopoiesis, and the morphological dysplasia of blood cells. Tet2 Δ/Δ Bcor ΔE9-10/y MDS cells reproduced MDS or evolved into lethal MDS/myeloproliferative neoplasms in secondary recipients. Transcriptional profiling revealed the derepression of myeloid regulator genes of the Cebp family and Hoxa cluster genes in Bcor ΔE9-10/y progenitor cells and the activation of p53 target genes specifically in MDS erythroblasts where massive apoptosis occurred. Our results reveal a tumor suppressor function of BCOR in myeloid malignancies and highlight the impact of Bcor insufficiency on the initiation and progression of MDS.


Assuntos
Sequência de Aminoácidos , Éxons , Síndromes Mielodisplásicas , Proteínas Repressoras , Deleção de Sequência , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA