RESUMO
South American camelids show high embryo loss rate, during the first 60 days of pregnancy. One of the factors which may be related to this situation is that over 98% of the embryos implant in the left uterine horn (LUH) even though both ovaries contribute similarly to ovulation. There is scarce information about the uterine environment of female camelids at any physiological state that could explain the capability of the LUH to attract the embryo and maintain pregnancy. We describe, for the first time, the biochemical and protein profile of uterine fluid (UF), addressing the right and LUH environment in non-pregnant and pregnant alpacas. Different substrates, electrolytes and metabolites were assayed in both uterine horn fluids. Small changes were observed in glucose and total protein levels, which were more noticeable during pregnancy. In addition, 10 specific proteins were found in the left horn fluid in 5-week-pregnant alpacas, and two protein bands were identified in non-pregnant alpaca right horn fluid. These results would provide basic information for identification of possible markers for pregnancy diagnosis, reproductive diseases and hormone-treated animals evaluation and hence contributing to improve the pregnancy rate.
Assuntos
Líquidos Corporais/química , Camelídeos Americanos , Prenhez/metabolismo , Proteínas/análise , Útero/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Glucose/análise , Gravidez , Proteínas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
The aim of this study was to elucidate the role of llama seminal plasma in the formation of oviductal sperm reservoirs. Female llamas with follicles in the mature phase were mated with a bulbourethral glands-removed male. Females mated with nonbulbourethral glands-removed males were used as control. Oviducts were obtained by surgery 24 h after mating. The uterotubal junction and isthmus were examined by scanning electron microscopy, and mucopolysaccharides were identified by Alcian blue staining. To know the proteins probably involved in sperm reservoir formation, SDS-PAGE of seminal plasma (8% and 18% resolving gel) was made. Spermatozoa only adhered to the oviductal mucosa surface of uterotubal junction of females mated with nonbulbourethral glands-removed males confirming that seminal plasma and, in particular, bulbourethral secretions are related with the oviductal sperm reservoir formation. Histological sections showed sperm in the lumen, immersed in substance, positive for acid mucopolysaccharides. Alcian blue staining of seminal plasma proteins SDS-PAGE showed a band of high molecular weight containing mucopolysaccharides, only present in nonbulbourethral glands-removed males. Bulbourethral glands would secrete at least eight different proteins that most likely participate in the process of sperm storage in the oviduct.