Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 9(2): e00727, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710781

RESUMO

D-Amino acid oxidase (DAAO) specifically catalyzes the oxidative deamination of neutral and polar D-amino acids and finally yields byproducts of hydrogen peroxide. Our previous work demonstrated that the spinal astroglial DAAO/hydrogen peroxide (H2 O2 ) pathway was involved in the process of pain and morphine antinociceptive tolerance. This study aimed to report mouse strain specificity of DAAO inhibitors on antinociception and explore its possible mechanism. DAAO inhibitors benzoic acid, CBIO, and SUN significantly inhibited formalin-induced tonic pain in Balb/c and Swiss mice, but had no antinociceptive effect in C57 mice. In contrast, morphine and gabapentin inhibited formalin-induced tonic pain by the same degrees among Swiss, Balb/c and C57 mice. Therefore, mouse strain difference in antinociceptive effects was DAAO inhibitors specific. In addition, intrathecal injection of D-serine greatly increased spinal H2 O2 levels by 80.0% and 56.9% in Swiss and Balb/c mice respectively, but reduced spinal H2 O2 levels by 29.0% in C57 mice. However, there was no remarkable difference in spinal DAAO activities among Swiss, Balb/c and C57 mice. The spinal expression of glutathione (GSH) and glutathione peroxidase (GPx) activity in C57 mice were significantly higher than Swiss and Balb/c mice. Furthermore, the specific GPx inhibitor D-penicillamine distinctly restored SUN antinociception in C57 mice. Our results reported that DAAO inhibitors produced antinociception in a strain-dependent manner in mice and the strain specificity might be associated with the difference in spinal GSH and GPx activity.


Assuntos
Analgésicos/administração & dosagem , Variação Biológica da População , D-Aminoácido Oxidase/antagonistas & inibidores , Nociceptividade/efeitos dos fármacos , Analgésicos/farmacocinética , Animais , D-Aminoácido Oxidase/metabolismo , Glutationa/análise , Glutationa/metabolismo , Glutationa Peroxidase/análise , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
2.
J Neuroinflammation ; 17(1): 75, 2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32113469

RESUMO

BACKGROUND: Cinobufagin is the major bufadienolide of Bufonis venenum (Chansu), which has been traditionally used for the treatment of chronic pain especially cancer pain. The current study aimed to evaluate its antinociceptive effects in bone cancer pain and explore the underlying mechanisms. METHODS: Rat bone cancer model was used in this study. The withdrawal threshold evoked by stimulation of the hindpaw was determined using a 2290 CE electrical von Frey hair. The ß-endorphin and IL-10 levels were measured in the spinal cord and cultured primary microglia, astrocytes, and neurons. RESULTS: Cinobufagin, given intrathecally, dose-dependently attenuated mechanical allodynia in bone cancer pain rats, with the projected Emax of 90% MPE and ED50 of 6.4 µg. Intrathecal cinobufagin also stimulated the gene and protein expression of IL-10 and ß-endorphin (but not dynorphin A) in the spinal cords of bone cancer pain rats. In addition, treatment with cinobufagin in cultured primary spinal microglia but not astrocytes or neurons stimulated the mRNA and protein expression of IL-10 and ß-endorphin, which was prevented by the pretreatment with the IL-10 antibody but not ß-endorphin antiserum. Furthermore, spinal cinobufagin-induced mechanical antiallodynia was inhibited by the pretreatment with intrathecal injection of the microglial inhibitor minocycline, IL-10 antibody, ß-endorphin antiserum and specific µ-opioid receptor antagonist CTAP. Lastly, cinobufagin- and the specific α-7 nicotinic acetylcholine receptor (α7-nAChR) agonist PHA-543613-induced microglial gene expression of IL-10/ß-endorphin and mechanical antiallodynia in bone cancer pain were blocked by the pretreatment with the specific α7-nAChR antagonist methyllycaconitine. CONCLUSIONS: Our results illustrate that cinobufagin produces mechanical antiallodynia in bone cancer pain through spinal microglial expression of IL-10 and subsequent ß-endorphin following activation of α7-nAChRs. Our results also highlight the broad significance of the recently uncovered spinal microglial IL-10/ß-endorphin pathway in antinociception.


Assuntos
Bufanolídeos/farmacologia , Dor do Câncer/metabolismo , Hiperalgesia/metabolismo , Microglia/efeitos dos fármacos , Animais , Neoplasias Ósseas/complicações , Feminino , Interleucina-10/metabolismo , Masculino , Microglia/metabolismo , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , beta-Endorfina/metabolismo
3.
Biochem Biophys Res Commun ; 525(4): 1087-1094, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32184015

RESUMO

Lemairamin (also known as wgx-50), is isolated from the pericarps of the Zanthoxylum plants. As an agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), it can reduce neuroinflammation in Alzheimer's disease. This study evaluated its antinociceptive effects in pain hypersensitivity and explored the underlying mechanisms. The data showed that subcutaneous lemairamin injection dose-dependently inhibited formalin-induced tonic pain but not acute nociception in mice and rats, while intrathecal lemairamin injection also dose-dependently produced mechanical antiallodynia in the ipsilateral hindpaws of neuropathic and bone cancer pain rats without affecting mechanical thresholds in the contralateral hindpaws. Multiple bi-daily lemairamin injections for 7 days did not induce mechanical antiallodynic tolerance in neuropathic rats. Moreover, the antinociceptive effects of lemairamin in formalin-induced tonic pain and mechanical antiallodynia in neuropathic pain were suppressed by the α7nAChR antagonist methyllycaconitine. In an α7nAChR antagonist-reversible manner, intrathecal lemairamin also stimulated spinal expression of IL-10 and ß-endorphin, while lemairamin treatment induced IL-10 and ß-endorphin expression in primary spinal microglial cells. In addition, intrathecal injection of a microglial activation inhibitor minocycline, anti-IL-10 antibody, anti-ß-endorphin antiserum or µ-opioid receptor-preferred antagonist naloxone was all able to block lemairamin-induced mechanical antiallodynia in neuropathic pain. These data demonstrated that lemairamin could produce antinociception in pain hypersensitivity through the spinal IL-10/ß-endorphin pathway following α7nAChR activation.


Assuntos
Acrilamidas/farmacologia , Analgésicos/farmacologia , Dor do Câncer/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Microglia/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Aconitina/análogos & derivados , Aconitina/farmacologia , Acrilamidas/administração & dosagem , Acrilamidas/uso terapêutico , Analgésicos/administração & dosagem , Analgésicos/uso terapêutico , Animais , Feminino , Formaldeído , Hiperalgesia/genética , Hiperalgesia/metabolismo , Injeções Espinhais , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Minociclina/administração & dosagem , Naloxona/administração & dosagem , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Zanthoxylum/química , Zanthoxylum/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , beta-Endorfina/genética , beta-Endorfina/metabolismo
4.
Eur J Pharmacol ; 876: 173062, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173379

RESUMO

Dezocine is an opioid analgesic widely used in China, occupying over 45% of the domestic market of opioid analgesics. We have recently demonstrated that dezocine produced mechanical antiallodynia and thermal antihyperalgesia through spinal µ-opioid receptor activation and norepinephrine reuptake inhibition in neuropathic pain. This study further explored the dual µ-opioid receptor and norepinephrine reuptake mechanisms underlying dezocine-induced mechanical antiallodynia in bone cancer pain, compared with tapentadol, the first recognized analgesic in this class. Dezocine and tapentadol, given subcutaneously, exerted profound mechanical antiallodynia in bone cancer pain rats in a dose-dependent manner, yielding similar maximal effects but different potencies: ED50s of 0.6 mg/kg for dezocine and 7.5 mg/kg for tapentadol, respectively. Furthermore, their mechanical antiallodynia was partially blocked by intrathecal injection of the specific µ-opioid receptor antagonist CTAP, but not κ-opioid receptor antagonists GNTI and nor-BNI or δ-opioid receptor antagonist naltrindole. Intrathecal administrations of the specific norepinephrine depletor 6-OHDA (but not the serotonin depletor PCPA) for three consecutive days and single injection of the α-adrenoceptor antagonist phentolamine/α2-adrenoceptor antagonist yohimbine partially blocked dezocine- and tapentadol-induced mechanical antiallodynia. Strikingly, the combination of CTAP and yohimbine nearly completely blocked dezocine- and tapentadol-induced mechanical antiallodynia. Our results illustrate that both dezocine and tapentadol exert mechanical antiallodynia in bone cancer pain through dual mechanisms of µ-opioid receptor activation and norepinephrine reuptake inhibition, and suggest that the µ-opioid receptor and norepinephrine reuptake dual-targeting opioids are effective analgesics in cancer pain.


Assuntos
Analgésicos Opioides/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dor do Câncer/tratamento farmacológico , Hiperalgesia/prevenção & controle , Receptores Opioides mu/metabolismo , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Tapentadol/farmacologia , Tetra-Hidronaftalenos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Neoplasias Ósseas , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Injeções Espinhais , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA