Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 791: 788-793, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27769700

RESUMO

Studies have shown a cardioprotective role of thyroid hormones (THs) in cardiac remodeling after acute myocardial infarction (MI). However, there is no data in the literature examining the influence of TH administration on the aortic tissue in an animal model of MI. This study aimed to evaluate the effects of thyroid hormones on the aorta after MI. Male Wistar rats were divided into a sham group (SHAM), infarcted group (AMI), sham+TH (SHAMT) and AMI+TH (AMIT). After MI, the animals received T3 and T4 (2 and 8µg/100g/day, respectively) by oral gavage for 12 days. Later, the animals underwent echocardiography and euthanasia and the aorta was collected for molecular and biochemical analysis. T3 and T4 administration increased the expression of the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1α (HIF-1α) in the aorta of AMIT rats when compared with AMI. With respect to TH receptors, AMI rats presented a decrease in TRß levels, which was prevented by the hormonal administration. In AMIT rats, both TRα and TRß levels were increased when compared with the AMI group. Reactive oxygen species levels and NADPH oxidase activity were decreased in both treated groups when compared with the non-treated animals. TH administration after MI may improve angiogenic signaling in the aorta as well as the responsiveness of this vessel to T3 and T4. These positive effects in the aorta may result in additional protection for the cardiovascular system in the context of cardiac ischaemic injury.


Assuntos
Aorta/efeitos dos fármacos , Aorta/metabolismo , Infarto do Miocárdio/patologia , Hormônios Tireóideos/farmacologia , Angiotensina I/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Xantina Oxidase/metabolismo
2.
Cell Mol Neurobiol ; 28(8): 1049-56, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18379870

RESUMO

Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H(2)O(2)) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H(2)O(2) concentration. However, one and 15 days after SNT, H(2)O(2) concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.


Assuntos
Neuralgia/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Aldeídos/metabolismo , Animais , Western Blotting , Ativação Enzimática , Peróxido de Hidrogênio/metabolismo , Masculino , Neuralgia/patologia , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar , Medula Espinal/enzimologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA