RESUMO
Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins1-3. Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators-which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements-can remodel their substrate DNA and cognate transposases to promote function.
Assuntos
Domínio AAA , Adenosina Trifosfatases , Transposases , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Domínio Catalítico , Microscopia Crioeletrônica , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , Ativação Enzimática , Modelos Moleculares , Multimerização Proteica , Transposases/metabolismo , Transposases/químicaRESUMO
Cell division in most bacteria is directed by FtsZ, a conserved tubulin-like GTPase that assembles forming the cytokinetic Z-ring and constitutes a target for the discovery of new antibiotics. The developmental regulator MciZ, a 40-amino acid peptide endogenously produced during Bacillus subtilis sporulation, halts cytokinesis in the mother cell by inhibiting FtsZ. The crystal structure of a FtsZ:MciZ complex revealed that bound MciZ extends the C-terminal ß-sheet of FtsZ blocking its assembly interface. Here we demonstrate that exogenously added MciZ specifically inhibits B. subtilis cell division, sporulation and germination, and provide insight into MciZ molecular recognition by FtsZ from different bacteria. MciZ and FtsZ form a complex with sub-micromolar affinity, analyzed by analytical ultracentrifugation, laser biolayer interferometry and isothermal titration calorimetry. Synthetic MciZ analogs, carrying single amino acid substitutions impairing MciZ ß-strand formation or hydrogen bonding to FtsZ, show a gradual reduction in affinity that resembles their impaired activity in bacteria. Gene sequences encoding MciZ spread across genus Bacillus and synthetic MciZ slows down cell division in Bacillus species, including pathogenic Bacillus cereus and Bacillus anthracis. Moreover, B. subtilis MciZ is recognized by the homologous FtsZ from Staphylococcus aureus and inhibits division when it is expressed into S. aureus cells.
Assuntos
Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Divisão Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/antagonistas & inibidores , Peptídeos/farmacologia , Substituição de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas do Citoesqueleto/genética , Regulação Bacteriana da Expressão Gênica , Peptídeos/síntese química , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genéticaRESUMO
The photoprotective potential against UVB radiation of extracts obtained from 21 commercial macroalgae from the Phyla Ochrophyta and Rhodophyta, was evaluated in vivo, using the zebrafish embryo as a whole model organism. Our results showed that the phenolic extracts from Macrocystis pyrifera and Porphyra columbina exhibited the highest photoprotective activity, close to complete photoprotection (100%), similar to that obtained for the carrageenophytes Sarcothalia radula and Gigartina skottsbergii. Under the assayed conditions, the extracts were safe and non-toxic to the embryos at a concentration of 0.04 mg/ml PGE.