Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Digit Health ; 5: 1187578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621964

RESUMO

Introduction: In gynecologic oncology, ovarian cancer is a great clinical challenge. Because of the lack of typical symptoms and effective biomarkers for noninvasive screening, most patients develop advanced-stage ovarian cancer by the time of diagnosis. MicroRNAs (miRNAs) are a type of non-coding RNA molecule that has been linked to human cancers. Specifying diagnostic biomarkers to determine non-cancer and cancer samples is difficult. Methods: By using Boruta, a novel random forest-based feature selection in the machine-learning techniques, we aimed to identify biomarkers associated with ovarian cancer using cancerous and non-cancer samples from the Gene Expression Omnibus (GEO) database: GSE106817. In this study, we used two independent GEO data sets as external validation, including GSE113486 and GSE113740. We utilized five state-of-the-art machine-learning algorithms for classification: logistic regression, random forest, decision trees, artificial neural networks, and XGBoost. Results: Four models discovered in GSE113486 had an AUC of 100%, three in GSE113740 with AUC of over 94%, and four in GSE113486 with AUC of over 94%. We identified 10 miRNAs to distinguish ovarian cancer cases from normal controls: hsa-miR-1290, hsa-miR-1233-5p, hsa-miR-1914-5p, hsa-miR-1469, hsa-miR-4675, hsa-miR-1228-5p, hsa-miR-3184-5p, hsa-miR-6784-5p, hsa-miR-6800-5p, and hsa-miR-5100. Our findings suggest that miRNAs could be used as possible biomarkers for ovarian cancer screening, for possible intervention.

2.
Front Genet ; 12: 779455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082831

RESUMO

Aim: This study aimed to accurately identification of potential miRNAs for gastric cancer (GC) diagnosis at the early stages of the disease. Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning models. We used the Boruta machine learning variable selection approach to identify the strong miRNAs associated with GC in the training sample. We then validated the prediction models in the independent sample GSE113486 data. Finally, an ontological analysis was done on identified miRNAs to eliciting the relevant relationships. Results: Of those 2,874 patients in the training the model, there were 115 (4%) patients with GC. Boruta identified 30 miRNAs as potential biomarkers for GC diagnosis and hsa-miR-1343-3p was at the highest ranking. All of the machine learning algorithms showed that using hsa-miR-1343-3p as a biomarker, GC can be predicted with very high precision (AUC; 100%, sensitivity; 100%, specificity; 100% ROC; 100%, Kappa; 100) using with the cut-off point of 8.2 for hsa-miR-1343-3p. Also, ontological analysis of 30 identified miRNAs approved their strong relationship with cancer associated genes and molecular events. Conclusion: The hsa-miR-1343-3p could be introduced as a valuable target for studies on the GC diagnosis using reliable biomarkers.

3.
Stat Med ; 38(22): 4310-4322, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31317564

RESUMO

Gamma regression is applied in several areas such as life testing, forecasting cancer incidences, genomics, rainfall prediction, experimental designs, and quality control. Gamma regression models allow for a monotone and no constant hazard in survival models. Owing to the broad applicability of gamma regression, we propose some novel and improved methods to estimate the coefficients of gamma regression model. We combine the unrestricted maximum likelihood (ML) estimators and the estimators that are restricted by linear hypothesis, and we present Stein-type shrinkage estimators (SEs). We then develop an asymptotic theory for SEs and obtain their asymptotic quadratic risks. In addition, we conduct Monte Carlo simulations to study the performance of the estimators in terms of their simulated relative efficiencies. It is evident from our studies that the proposed SEs outperform the usual ML estimators. Furthermore, some tabular and graphical representations are given as proofs of our assertions. This study is finally ended by appraising the performance of our estimators for a real prostate cancer data.


Assuntos
Análise de Regressão , Análise de Sobrevida , Simulação por Computador , Humanos , Funções Verossimilhança , Masculino , Método de Monte Carlo , Neoplasias da Próstata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA